Metamath Proof Explorer
Description: An idiom to express that a lattice element differs from two others.
(Contributed by NM, 19-Jul-2012)
|
|
Ref |
Expression |
|
Hypotheses |
latlej.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
latlej.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
|
latlej.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
|
Assertion |
latnlej1l |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) → 𝑋 ≠ 𝑌 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
latlej.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latlej.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
latlej.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
1 2 3
|
latnlej |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) → ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ) ) |
5 |
4
|
simpld |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) → 𝑋 ≠ 𝑌 ) |