Metamath Proof Explorer
		
		
		
		Description:  An idiom to express that a lattice element differs from two others.
       (Contributed by NM, 19-Jul-2012)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | latlej.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
					
						|  |  | latlej.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
					
						|  |  | latlej.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
				
					|  | Assertion | latnlej1l | ⊢  ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ¬  𝑋  ≤  ( 𝑌  ∨  𝑍 ) )  →  𝑋  ≠  𝑌 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | latlej.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | latlej.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | latlej.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 | 1 2 3 | latnlej | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ¬  𝑋  ≤  ( 𝑌  ∨  𝑍 ) )  →  ( 𝑋  ≠  𝑌  ∧  𝑋  ≠  𝑍 ) ) | 
						
							| 5 | 4 | simpld | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ¬  𝑋  ≤  ( 𝑌  ∨  𝑍 ) )  →  𝑋  ≠  𝑌 ) |