Step |
Hyp |
Ref |
Expression |
1 |
|
latlej.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
latlej.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
latlej.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑌 ≤ ( 𝑌 ∨ 𝑍 ) ) |
5 |
4
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ≤ ( 𝑌 ∨ 𝑍 ) ) |
6 |
|
simpl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) |
7 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
8 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
9 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑍 ) ∈ 𝐵 ) |
10 |
9
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ∨ 𝑍 ) ∈ 𝐵 ) |
11 |
1 2
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑌 ∨ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ ( 𝑌 ∨ 𝑍 ) ) → 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
12 |
6 7 8 10 11
|
syl13anc |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ ( 𝑌 ∨ 𝑍 ) ) → 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
13 |
5 12
|
mpan2d |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
14 |
13
|
con3d |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) → ¬ 𝑋 ≤ 𝑌 ) ) |
15 |
1 2 3
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ≤ ( 𝑌 ∨ 𝑍 ) ) |
16 |
15
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ≤ ( 𝑌 ∨ 𝑍 ) ) |
17 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
18 |
1 2
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ ( 𝑌 ∨ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ ( 𝑌 ∨ 𝑍 ) ) → 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
19 |
6 7 17 10 18
|
syl13anc |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 ≤ ( 𝑌 ∨ 𝑍 ) ) → 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
20 |
16 19
|
mpan2d |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑍 → 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
21 |
20
|
con3d |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) → ¬ 𝑋 ≤ 𝑍 ) ) |
22 |
14 21
|
jcad |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) → ( ¬ 𝑋 ≤ 𝑌 ∧ ¬ 𝑋 ≤ 𝑍 ) ) ) |
23 |
22
|
3impia |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) → ( ¬ 𝑋 ≤ 𝑌 ∧ ¬ 𝑋 ≤ 𝑍 ) ) |