Metamath Proof Explorer
		
		
		
		Description:  An idiom to express that a lattice element differs from two others.
       (Contributed by NM, 19-Jul-2012)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						latlej.b | 
						⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
					
					
						 | 
						 | 
						latlej.l | 
						⊢  ≤   =  ( le ‘ 𝐾 )  | 
					
					
						 | 
						 | 
						latlej.j | 
						⊢  ∨   =  ( join ‘ 𝐾 )  | 
					
				
					 | 
					Assertion | 
					latnlej2r | 
					⊢  ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ¬  𝑋  ≤  ( 𝑌  ∨  𝑍 ) )  →  ¬  𝑋  ≤  𝑍 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							latlej.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							latlej.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							latlej.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							latnlej2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ¬  𝑋  ≤  ( 𝑌  ∨  𝑍 ) )  →  ( ¬  𝑋  ≤  𝑌  ∧  ¬  𝑋  ≤  𝑍 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							simprd | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ¬  𝑋  ≤  ( 𝑌  ∨  𝑍 ) )  →  ¬  𝑋  ≤  𝑍 )  |