Metamath Proof Explorer


Theorem latnlemlt

Description: Negation of "less than or equal to" expressed in terms of meet and less-than. ( nssinpss analog.) (Contributed by NM, 5-Feb-2012)

Ref Expression
Hypotheses latnlemlt.b 𝐵 = ( Base ‘ 𝐾 )
latnlemlt.l = ( le ‘ 𝐾 )
latnlemlt.s < = ( lt ‘ 𝐾 )
latnlemlt.m = ( meet ‘ 𝐾 )
Assertion latnlemlt ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ¬ 𝑋 𝑌 ↔ ( 𝑋 𝑌 ) < 𝑋 ) )

Proof

Step Hyp Ref Expression
1 latnlemlt.b 𝐵 = ( Base ‘ 𝐾 )
2 latnlemlt.l = ( le ‘ 𝐾 )
3 latnlemlt.s < = ( lt ‘ 𝐾 )
4 latnlemlt.m = ( meet ‘ 𝐾 )
5 1 2 4 latmle1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) 𝑋 )
6 5 biantrurd ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌 ) ≠ 𝑋 ↔ ( ( 𝑋 𝑌 ) 𝑋 ∧ ( 𝑋 𝑌 ) ≠ 𝑋 ) ) )
7 1 2 4 latleeqm1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝑌 ) = 𝑋 ) )
8 7 necon3bbid ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ¬ 𝑋 𝑌 ↔ ( 𝑋 𝑌 ) ≠ 𝑋 ) )
9 simp1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ Lat )
10 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
11 simp2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → 𝑋𝐵 )
12 2 3 pltval ( ( 𝐾 ∈ Lat ∧ ( 𝑋 𝑌 ) ∈ 𝐵𝑋𝐵 ) → ( ( 𝑋 𝑌 ) < 𝑋 ↔ ( ( 𝑋 𝑌 ) 𝑋 ∧ ( 𝑋 𝑌 ) ≠ 𝑋 ) ) )
13 9 10 11 12 syl3anc ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌 ) < 𝑋 ↔ ( ( 𝑋 𝑌 ) 𝑋 ∧ ( 𝑋 𝑌 ) ≠ 𝑋 ) ) )
14 6 8 13 3bitr4d ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵 ) → ( ¬ 𝑋 𝑌 ↔ ( 𝑋 𝑌 ) < 𝑋 ) )