Metamath Proof Explorer


Theorem latpos

Description: A lattice is a poset. (Contributed by NM, 17-Sep-2011)

Ref Expression
Assertion latpos ( 𝐾 ∈ Lat → 𝐾 ∈ Poset )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
2 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
3 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
4 1 2 3 islat ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∧ dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) )
5 4 simplbi ( 𝐾 ∈ Lat → 𝐾 ∈ Poset )