Metamath Proof Explorer


Theorem latref

Description: A lattice ordering is reflexive. ( ssid analog.) (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses latref.b 𝐵 = ( Base ‘ 𝐾 )
latref.l = ( le ‘ 𝐾 )
Assertion latref ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → 𝑋 𝑋 )

Proof

Step Hyp Ref Expression
1 latref.b 𝐵 = ( Base ‘ 𝐾 )
2 latref.l = ( le ‘ 𝐾 )
3 latpos ( 𝐾 ∈ Lat → 𝐾 ∈ Poset )
4 1 2 posref ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → 𝑋 𝑋 )
5 3 4 sylan ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ) → 𝑋 𝑋 )