Metamath Proof Explorer
Description: A lattice ordering is reflexive. ( ssid analog.) (Contributed by NM, 8-Oct-2011)
|
|
Ref |
Expression |
|
Hypotheses |
latref.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
latref.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
Assertion |
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latref.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
latref.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
latpos |
⊢ ( 𝐾 ∈ Lat → 𝐾 ∈ Poset ) |
| 4 |
1 2
|
posref |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
| 5 |
3 4
|
sylan |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |