Metamath Proof Explorer


Theorem lattrd

Description: A lattice ordering is transitive. Deduction version of lattr . (Contributed by NM, 3-Sep-2012)

Ref Expression
Hypotheses lattrd.b 𝐵 = ( Base ‘ 𝐾 )
lattrd.l = ( le ‘ 𝐾 )
lattrd.1 ( 𝜑𝐾 ∈ Lat )
lattrd.2 ( 𝜑𝑋𝐵 )
lattrd.3 ( 𝜑𝑌𝐵 )
lattrd.4 ( 𝜑𝑍𝐵 )
lattrd.5 ( 𝜑𝑋 𝑌 )
lattrd.6 ( 𝜑𝑌 𝑍 )
Assertion lattrd ( 𝜑𝑋 𝑍 )

Proof

Step Hyp Ref Expression
1 lattrd.b 𝐵 = ( Base ‘ 𝐾 )
2 lattrd.l = ( le ‘ 𝐾 )
3 lattrd.1 ( 𝜑𝐾 ∈ Lat )
4 lattrd.2 ( 𝜑𝑋𝐵 )
5 lattrd.3 ( 𝜑𝑌𝐵 )
6 lattrd.4 ( 𝜑𝑍𝐵 )
7 lattrd.5 ( 𝜑𝑋 𝑌 )
8 lattrd.6 ( 𝜑𝑌 𝑍 )
9 1 2 lattr ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌𝑌 𝑍 ) → 𝑋 𝑍 ) )
10 3 4 5 6 9 syl13anc ( 𝜑 → ( ( 𝑋 𝑌𝑌 𝑍 ) → 𝑋 𝑍 ) )
11 7 8 10 mp2and ( 𝜑𝑋 𝑍 )