Metamath Proof Explorer
Description: A lattice ordering is transitive. Deduction version of lattr .
(Contributed by NM, 3-Sep-2012)
|
|
Ref |
Expression |
|
Hypotheses |
lattrd.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
lattrd.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
|
lattrd.1 |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
|
|
lattrd.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
lattrd.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
lattrd.4 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
|
|
lattrd.5 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
|
|
lattrd.6 |
⊢ ( 𝜑 → 𝑌 ≤ 𝑍 ) |
|
Assertion |
lattrd |
⊢ ( 𝜑 → 𝑋 ≤ 𝑍 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lattrd.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lattrd.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
lattrd.1 |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
4 |
|
lattrd.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
lattrd.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
lattrd.4 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
lattrd.5 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
8 |
|
lattrd.6 |
⊢ ( 𝜑 → 𝑌 ≤ 𝑍 ) |
9 |
1 2
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |
10 |
3 4 5 6 9
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |
11 |
7 8 10
|
mp2and |
⊢ ( 𝜑 → 𝑋 ≤ 𝑍 ) |