Step |
Hyp |
Ref |
Expression |
1 |
|
lautcnv.i |
⊢ 𝐼 = ( LAut ‘ 𝐾 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
3 |
2 1
|
laut1o |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
4 |
|
f1ocnv |
⊢ ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → ◡ 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) → ◡ 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
6 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
7 |
2 6 1
|
lautcnvle |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
8 |
7
|
ralrimivva |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
9 |
2 6 1
|
islaut |
⊢ ( 𝐾 ∈ 𝑉 → ( ◡ 𝐹 ∈ 𝐼 ↔ ( ◡ 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) → ( ◡ 𝐹 ∈ 𝐼 ↔ ( ◡ 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ( le ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) ) |
11 |
5 8 10
|
mpbir2and |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) → ◡ 𝐹 ∈ 𝐼 ) |