Description: Reverse closure of a lattice automorphism. (Contributed by NM, 25-May-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | laut1o.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| laut1o.i | ⊢ 𝐼 = ( LAut ‘ 𝐾 ) | ||
| Assertion | lautcnvclN | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ 𝑋 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | laut1o.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | laut1o.i | ⊢ 𝐼 = ( LAut ‘ 𝐾 ) | |
| 3 | 1 2 | laut1o | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 4 | f1ocnvdm | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) | |
| 5 | 3 4 | sylan | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ 𝑋 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |