Description: Reverse closure of a lattice automorphism. (Contributed by NM, 25-May-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | laut1o.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
laut1o.i | ⊢ 𝐼 = ( LAut ‘ 𝐾 ) | ||
Assertion | lautcnvclN | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ 𝑋 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | laut1o.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | laut1o.i | ⊢ 𝐼 = ( LAut ‘ 𝐾 ) | |
3 | 1 2 | laut1o | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
4 | f1ocnvdm | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) | |
5 | 3 4 | sylan | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ 𝑋 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |