Metamath Proof Explorer


Theorem lautcnvle

Description: Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012)

Ref Expression
Hypotheses lautcnvle.b 𝐵 = ( Base ‘ 𝐾 )
lautcnvle.l = ( le ‘ 𝐾 )
lautcnvle.i 𝐼 = ( LAut ‘ 𝐾 )
Assertion lautcnvle ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 𝑌 ↔ ( 𝐹𝑋 ) ( 𝐹𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 lautcnvle.b 𝐵 = ( Base ‘ 𝐾 )
2 lautcnvle.l = ( le ‘ 𝐾 )
3 lautcnvle.i 𝐼 = ( LAut ‘ 𝐾 )
4 simpl ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝐾𝑉𝐹𝐼 ) )
5 1 3 laut1o ( ( 𝐾𝑉𝐹𝐼 ) → 𝐹 : 𝐵1-1-onto𝐵 )
6 5 adantr ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝐹 : 𝐵1-1-onto𝐵 )
7 simprl ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑋𝐵 )
8 f1ocnvdm ( ( 𝐹 : 𝐵1-1-onto𝐵𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝐵 )
9 6 7 8 syl2anc ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝐹𝑋 ) ∈ 𝐵 )
10 simprr ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑌𝐵 )
11 f1ocnvdm ( ( 𝐹 : 𝐵1-1-onto𝐵𝑌𝐵 ) → ( 𝐹𝑌 ) ∈ 𝐵 )
12 6 10 11 syl2anc ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝐹𝑌 ) ∈ 𝐵 )
13 1 2 3 lautle ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( ( 𝐹𝑋 ) ∈ 𝐵 ∧ ( 𝐹𝑌 ) ∈ 𝐵 ) ) → ( ( 𝐹𝑋 ) ( 𝐹𝑌 ) ↔ ( 𝐹 ‘ ( 𝐹𝑋 ) ) ( 𝐹 ‘ ( 𝐹𝑌 ) ) ) )
14 4 9 12 13 syl12anc ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝐹𝑋 ) ( 𝐹𝑌 ) ↔ ( 𝐹 ‘ ( 𝐹𝑋 ) ) ( 𝐹 ‘ ( 𝐹𝑌 ) ) ) )
15 f1ocnvfv2 ( ( 𝐹 : 𝐵1-1-onto𝐵𝑋𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑋 ) ) = 𝑋 )
16 6 7 15 syl2anc ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝐹 ‘ ( 𝐹𝑋 ) ) = 𝑋 )
17 f1ocnvfv2 ( ( 𝐹 : 𝐵1-1-onto𝐵𝑌𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑌 ) ) = 𝑌 )
18 6 10 17 syl2anc ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝐹 ‘ ( 𝐹𝑌 ) ) = 𝑌 )
19 16 18 breq12d ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝐹 ‘ ( 𝐹𝑋 ) ) ( 𝐹 ‘ ( 𝐹𝑌 ) ) ↔ 𝑋 𝑌 ) )
20 14 19 bitr2d ( ( ( 𝐾𝑉𝐹𝐼 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 𝑌 ↔ ( 𝐹𝑋 ) ( 𝐹𝑌 ) ) )