Step |
Hyp |
Ref |
Expression |
1 |
|
lautcnvle.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lautcnvle.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
lautcnvle.i |
⊢ 𝐼 = ( LAut ‘ 𝐾 ) |
4 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ) |
5 |
1 3
|
laut1o |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
7 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
8 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
10 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
11 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) |
12 |
6 10 11
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) |
13 |
1 2 3
|
lautle |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) ) → ( ( ◡ 𝐹 ‘ 𝑋 ) ≤ ( ◡ 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) ≤ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) ) ) |
14 |
4 9 12 13
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ◡ 𝐹 ‘ 𝑋 ) ≤ ( ◡ 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) ≤ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) ) ) |
15 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
16 |
6 7 15
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
17 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
18 |
6 10 17
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
19 |
16 18
|
breq12d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) ≤ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) ↔ 𝑋 ≤ 𝑌 ) ) |
20 |
14 19
|
bitr2d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 ↔ ( ◡ 𝐹 ‘ 𝑋 ) ≤ ( ◡ 𝐹 ‘ 𝑌 ) ) ) |