| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lauteq.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							lauteq.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							lauteq.i | 
							⊢ 𝐼  =  ( LAut ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝐾  ∈  HL )  | 
						
						
							| 5 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝐹  ∈  𝐼 )  | 
						
						
							| 6 | 
							
								1 2
							 | 
							atbase | 
							⊢ ( 𝑝  ∈  𝐴  →  𝑝  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝑝  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 )  | 
						
						
							| 10 | 
							
								1 9 3
							 | 
							lautle | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼 )  ∧  ( 𝑝  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( 𝑝 ( le ‘ 𝐾 ) 𝑋  ↔  ( 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 11 | 
							
								4 5 7 8 10
							 | 
							syl22anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( 𝑝 ( le ‘ 𝐾 ) 𝑋  ↔  ( 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							breq1 | 
							⊢ ( ( 𝐹 ‘ 𝑝 )  =  𝑝  →  ( ( 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 )  ↔  𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sylan9bb | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑝 )  =  𝑝 )  →  ( 𝑝 ( le ‘ 𝐾 ) 𝑋  ↔  𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							bicomd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑝 )  =  𝑝 )  →  ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 )  ↔  𝑝 ( le ‘ 𝐾 ) 𝑋 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑝 )  =  𝑝  →  ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 )  ↔  𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ralimdva | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  →  ( ∀ 𝑝  ∈  𝐴 ( 𝐹 ‘ 𝑝 )  =  𝑝  →  ∀ 𝑝  ∈  𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 )  ↔  𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							imp | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  ∀ 𝑝  ∈  𝐴 ( 𝐹 ‘ 𝑝 )  =  𝑝 )  →  ∀ 𝑝  ∈  𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 )  ↔  𝑝 ( le ‘ 𝐾 ) 𝑋 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  ∀ 𝑝  ∈  𝐴 ( 𝐹 ‘ 𝑝 )  =  𝑝 )  →  𝐾  ∈  HL )  | 
						
						
							| 19 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  ∀ 𝑝  ∈  𝐴 ( 𝐹 ‘ 𝑝 )  =  𝑝 )  →  𝐹  ∈  𝐼 )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  ∀ 𝑝  ∈  𝐴 ( 𝐹 ‘ 𝑝 )  =  𝑝 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 21 | 
							
								1 3
							 | 
							lautcl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 22 | 
							
								18 19 20 21
							 | 
							syl21anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  ∀ 𝑝  ∈  𝐴 ( 𝐹 ‘ 𝑝 )  =  𝑝 )  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 23 | 
							
								1 9 2
							 | 
							hlateq | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐹 ‘ 𝑋 )  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ∀ 𝑝  ∈  𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 )  ↔  𝑝 ( le ‘ 𝐾 ) 𝑋 )  ↔  ( 𝐹 ‘ 𝑋 )  =  𝑋 ) )  | 
						
						
							| 24 | 
							
								18 22 20 23
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  ∀ 𝑝  ∈  𝐴 ( 𝐹 ‘ 𝑝 )  =  𝑝 )  →  ( ∀ 𝑝  ∈  𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 )  ↔  𝑝 ( le ‘ 𝐾 ) 𝑋 )  ↔  ( 𝐹 ‘ 𝑋 )  =  𝑋 ) )  | 
						
						
							| 25 | 
							
								17 24
							 | 
							mpbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝐹  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  ∧  ∀ 𝑝  ∈  𝐴 ( 𝐹 ‘ 𝑝 )  =  𝑝 )  →  ( 𝐹 ‘ 𝑋 )  =  𝑋 )  |