Metamath Proof Explorer


Theorem lauteq

Description: A lattice automorphism argument is equal to its value if all atoms are equal to their values. (Contributed by NM, 24-May-2012)

Ref Expression
Hypotheses lauteq.b 𝐵 = ( Base ‘ 𝐾 )
lauteq.a 𝐴 = ( Atoms ‘ 𝐾 )
lauteq.i 𝐼 = ( LAut ‘ 𝐾 )
Assertion lauteq ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ ∀ 𝑝𝐴 ( 𝐹𝑝 ) = 𝑝 ) → ( 𝐹𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 lauteq.b 𝐵 = ( Base ‘ 𝐾 )
2 lauteq.a 𝐴 = ( Atoms ‘ 𝐾 )
3 lauteq.i 𝐼 = ( LAut ‘ 𝐾 )
4 simpl1 ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ 𝑝𝐴 ) → 𝐾 ∈ HL )
5 simpl2 ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ 𝑝𝐴 ) → 𝐹𝐼 )
6 1 2 atbase ( 𝑝𝐴𝑝𝐵 )
7 6 adantl ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ 𝑝𝐴 ) → 𝑝𝐵 )
8 simpl3 ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ 𝑝𝐴 ) → 𝑋𝐵 )
9 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
10 1 9 3 lautle ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼 ) ∧ ( 𝑝𝐵𝑋𝐵 ) ) → ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝐹𝑝 ) ( le ‘ 𝐾 ) ( 𝐹𝑋 ) ) )
11 4 5 7 8 10 syl22anc ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ 𝑝𝐴 ) → ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝐹𝑝 ) ( le ‘ 𝐾 ) ( 𝐹𝑋 ) ) )
12 breq1 ( ( 𝐹𝑝 ) = 𝑝 → ( ( 𝐹𝑝 ) ( le ‘ 𝐾 ) ( 𝐹𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝐹𝑋 ) ) )
13 11 12 sylan9bb ( ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ 𝑝𝐴 ) ∧ ( 𝐹𝑝 ) = 𝑝 ) → ( 𝑝 ( le ‘ 𝐾 ) 𝑋𝑝 ( le ‘ 𝐾 ) ( 𝐹𝑋 ) ) )
14 13 bicomd ( ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ 𝑝𝐴 ) ∧ ( 𝐹𝑝 ) = 𝑝 ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) )
15 14 ex ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ 𝑝𝐴 ) → ( ( 𝐹𝑝 ) = 𝑝 → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) )
16 15 ralimdva ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) → ( ∀ 𝑝𝐴 ( 𝐹𝑝 ) = 𝑝 → ∀ 𝑝𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) )
17 16 imp ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ ∀ 𝑝𝐴 ( 𝐹𝑝 ) = 𝑝 ) → ∀ 𝑝𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) )
18 simpl1 ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ ∀ 𝑝𝐴 ( 𝐹𝑝 ) = 𝑝 ) → 𝐾 ∈ HL )
19 simpl2 ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ ∀ 𝑝𝐴 ( 𝐹𝑝 ) = 𝑝 ) → 𝐹𝐼 )
20 simpl3 ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ ∀ 𝑝𝐴 ( 𝐹𝑝 ) = 𝑝 ) → 𝑋𝐵 )
21 1 3 lautcl ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼 ) ∧ 𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝐵 )
22 18 19 20 21 syl21anc ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ ∀ 𝑝𝐴 ( 𝐹𝑝 ) = 𝑝 ) → ( 𝐹𝑋 ) ∈ 𝐵 )
23 1 9 2 hlateq ( ( 𝐾 ∈ HL ∧ ( 𝐹𝑋 ) ∈ 𝐵𝑋𝐵 ) → ( ∀ 𝑝𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝐹𝑋 ) = 𝑋 ) )
24 18 22 20 23 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ ∀ 𝑝𝐴 ( 𝐹𝑝 ) = 𝑝 ) → ( ∀ 𝑝𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝐹𝑋 ) = 𝑋 ) )
25 17 24 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵 ) ∧ ∀ 𝑝𝐴 ( 𝐹𝑝 ) = 𝑝 ) → ( 𝐹𝑋 ) = 𝑋 )