Step |
Hyp |
Ref |
Expression |
1 |
|
lauteq.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lauteq.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
lauteq.i |
⊢ 𝐼 = ( LAut ‘ 𝐾 ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝐹 ∈ 𝐼 ) |
6 |
1 2
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝐵 ) |
8 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
10 |
1 9 3
|
lautle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ) ) |
11 |
4 5 7 8 10
|
syl22anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ) ) |
12 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑝 ) = 𝑝 → ( ( 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ) ) |
13 |
11 12
|
sylan9bb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( 𝑝 ( le ‘ 𝐾 ) 𝑋 ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ) ) |
14 |
13
|
bicomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) |
15 |
14
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑝 ) = 𝑝 → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
16 |
15
|
ralimdva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 → ∀ 𝑝 ∈ 𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
17 |
16
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ∀ 𝑝 ∈ 𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ) |
18 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → 𝐾 ∈ HL ) |
19 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → 𝐹 ∈ 𝐼 ) |
20 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → 𝑋 ∈ 𝐵 ) |
21 |
1 3
|
lautcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
22 |
18 19 20 21
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
23 |
1 9 2
|
hlateq |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |
24 |
18 22 20 23
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ( le ‘ 𝐾 ) ( 𝐹 ‘ 𝑋 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) = 𝑋 ) ) |
25 |
17 24
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) ∧ ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |