| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lautset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
lautset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
lautset.i |
⊢ 𝐼 = ( LAut ‘ 𝐾 ) |
| 4 |
|
elex |
⊢ ( 𝐾 ∈ 𝐴 → 𝐾 ∈ V ) |
| 5 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) |
| 6 |
5 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 7 |
6
|
f1oeq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ↔ 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ 𝑘 ) ) ) |
| 8 |
|
f1oeq3 |
⊢ ( ( Base ‘ 𝑘 ) = 𝐵 → ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ 𝑘 ) ↔ 𝑓 : 𝐵 –1-1-onto→ 𝐵 ) ) |
| 9 |
6 8
|
syl |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ 𝑘 ) ↔ 𝑓 : 𝐵 –1-1-onto→ 𝐵 ) ) |
| 10 |
7 9
|
bitrd |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ↔ 𝑓 : 𝐵 –1-1-onto→ 𝐵 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) |
| 12 |
11 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
| 13 |
12
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
| 14 |
12
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) |
| 15 |
13 14
|
bibi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 16 |
6 15
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 17 |
6 16
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 18 |
10 17
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 19 |
18
|
abbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 20 |
|
df-laut |
⊢ LAut = ( 𝑘 ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 21 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 22 |
21 21
|
mapval |
⊢ ( 𝐵 ↑m 𝐵 ) = { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐵 } |
| 23 |
|
ovex |
⊢ ( 𝐵 ↑m 𝐵 ) ∈ V |
| 24 |
22 23
|
eqeltrri |
⊢ { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐵 } ∈ V |
| 25 |
|
f1of |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 → 𝑓 : 𝐵 ⟶ 𝐵 ) |
| 26 |
25
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐵 ⟶ 𝐵 } |
| 27 |
24 26
|
ssexi |
⊢ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐵 } ∈ V |
| 28 |
|
simpl |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) → 𝑓 : 𝐵 –1-1-onto→ 𝐵 ) |
| 29 |
28
|
ss2abi |
⊢ { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) } ⊆ { 𝑓 ∣ 𝑓 : 𝐵 –1-1-onto→ 𝐵 } |
| 30 |
27 29
|
ssexi |
⊢ { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) } ∈ V |
| 31 |
19 20 30
|
fvmpt |
⊢ ( 𝐾 ∈ V → ( LAut ‘ 𝐾 ) = { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 32 |
3 31
|
eqtrid |
⊢ ( 𝐾 ∈ V → 𝐼 = { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 33 |
4 32
|
syl |
⊢ ( 𝐾 ∈ 𝐴 → 𝐼 = { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) } ) |