| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lawcoslem1.1 | ⊢ ( 𝜑  →  𝑈  ∈  ℂ ) | 
						
							| 2 |  | lawcoslem1.2 | ⊢ ( 𝜑  →  𝑉  ∈  ℂ ) | 
						
							| 3 |  | lawcoslem1.3 | ⊢ ( 𝜑  →  𝑈  ≠  0 ) | 
						
							| 4 |  | lawcoslem1.4 | ⊢ ( 𝜑  →  𝑉  ≠  0 ) | 
						
							| 5 |  | sqabssub | ⊢ ( ( 𝑈  ∈  ℂ  ∧  𝑉  ∈  ℂ )  →  ( ( abs ‘ ( 𝑈  −  𝑉 ) ) ↑ 2 )  =  ( ( ( ( abs ‘ 𝑈 ) ↑ 2 )  +  ( ( abs ‘ 𝑉 ) ↑ 2 ) )  −  ( 2  ·  ( ℜ ‘ ( 𝑈  ·  ( ∗ ‘ 𝑉 ) ) ) ) ) ) | 
						
							| 6 | 1 2 5 | syl2anc | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝑈  −  𝑉 ) ) ↑ 2 )  =  ( ( ( ( abs ‘ 𝑈 ) ↑ 2 )  +  ( ( abs ‘ 𝑉 ) ↑ 2 ) )  −  ( 2  ·  ( ℜ ‘ ( 𝑈  ·  ( ∗ ‘ 𝑉 ) ) ) ) ) ) | 
						
							| 7 | 1 2 4 | absdivd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝑈  /  𝑉 ) )  =  ( ( abs ‘ 𝑈 )  /  ( abs ‘ 𝑉 ) ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝜑  →  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  /  ( abs ‘ ( 𝑈  /  𝑉 ) ) )  =  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  /  ( ( abs ‘ 𝑈 )  /  ( abs ‘ 𝑉 ) ) ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  /  ( abs ‘ ( 𝑈  /  𝑉 ) ) ) )  =  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  /  ( ( abs ‘ 𝑈 )  /  ( abs ‘ 𝑉 ) ) ) ) ) | 
						
							| 10 | 1 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝑈 )  ∈  ℝ ) | 
						
							| 11 | 2 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝑉 )  ∈  ℝ ) | 
						
							| 12 | 10 11 | remulcld | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ∈  ℂ ) | 
						
							| 14 | 1 2 4 | divcld | ⊢ ( 𝜑  →  ( 𝑈  /  𝑉 )  ∈  ℂ ) | 
						
							| 15 | 14 | recld | ⊢ ( 𝜑  →  ( ℜ ‘ ( 𝑈  /  𝑉 ) )  ∈  ℝ ) | 
						
							| 16 | 15 | recnd | ⊢ ( 𝜑  →  ( ℜ ‘ ( 𝑈  /  𝑉 ) )  ∈  ℂ ) | 
						
							| 17 | 10 | recnd | ⊢ ( 𝜑  →  ( abs ‘ 𝑈 )  ∈  ℂ ) | 
						
							| 18 | 11 | recnd | ⊢ ( 𝜑  →  ( abs ‘ 𝑉 )  ∈  ℂ ) | 
						
							| 19 | 2 4 | absne0d | ⊢ ( 𝜑  →  ( abs ‘ 𝑉 )  ≠  0 ) | 
						
							| 20 | 17 18 19 | divcld | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑈 )  /  ( abs ‘ 𝑉 ) )  ∈  ℂ ) | 
						
							| 21 | 1 3 | absne0d | ⊢ ( 𝜑  →  ( abs ‘ 𝑈 )  ≠  0 ) | 
						
							| 22 | 17 18 21 19 | divne0d | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑈 )  /  ( abs ‘ 𝑉 ) )  ≠  0 ) | 
						
							| 23 | 13 16 20 22 | div12d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  /  ( ( abs ‘ 𝑈 )  /  ( abs ‘ 𝑉 ) ) ) )  =  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  ·  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  /  ( ( abs ‘ 𝑈 )  /  ( abs ‘ 𝑉 ) ) ) ) ) | 
						
							| 24 | 9 23 | eqtrd | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  /  ( abs ‘ ( 𝑈  /  𝑉 ) ) ) )  =  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  ·  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  /  ( ( abs ‘ 𝑈 )  /  ( abs ‘ 𝑉 ) ) ) ) ) | 
						
							| 25 | 13 17 18 21 19 | divdiv2d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  /  ( ( abs ‘ 𝑈 )  /  ( abs ‘ 𝑉 ) ) )  =  ( ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( abs ‘ 𝑉 ) )  /  ( abs ‘ 𝑈 ) ) ) | 
						
							| 26 | 18 | sqvald | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑉 ) ↑ 2 )  =  ( ( abs ‘ 𝑉 )  ·  ( abs ‘ 𝑉 ) ) ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( abs ‘ 𝑈 ) )  =  ( ( ( abs ‘ 𝑉 )  ·  ( abs ‘ 𝑉 ) )  ·  ( abs ‘ 𝑈 ) ) ) | 
						
							| 28 | 17 18 18 | mul31d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( abs ‘ 𝑉 ) )  =  ( ( ( abs ‘ 𝑉 )  ·  ( abs ‘ 𝑉 ) )  ·  ( abs ‘ 𝑈 ) ) ) | 
						
							| 29 | 27 28 | eqtr4d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( abs ‘ 𝑈 ) )  =  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( abs ‘ 𝑉 ) ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( abs ‘ 𝑈 ) )  /  ( abs ‘ 𝑈 ) )  =  ( ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( abs ‘ 𝑉 ) )  /  ( abs ‘ 𝑈 ) ) ) | 
						
							| 31 | 18 | sqcld | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑉 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 32 | 31 17 21 | divcan4d | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( abs ‘ 𝑈 ) )  /  ( abs ‘ 𝑈 ) )  =  ( ( abs ‘ 𝑉 ) ↑ 2 ) ) | 
						
							| 33 | 25 30 32 | 3eqtr2rd | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑉 ) ↑ 2 )  =  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  /  ( ( abs ‘ 𝑈 )  /  ( abs ‘ 𝑉 ) ) ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝜑  →  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  ·  ( ( abs ‘ 𝑉 ) ↑ 2 ) )  =  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  ·  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  /  ( ( abs ‘ 𝑈 )  /  ( abs ‘ 𝑉 ) ) ) ) ) | 
						
							| 35 | 16 31 | mulcomd | ⊢ ( 𝜑  →  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  ·  ( ( abs ‘ 𝑉 ) ↑ 2 ) )  =  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( ℜ ‘ ( 𝑈  /  𝑉 ) ) ) ) | 
						
							| 36 | 11 | resqcld | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑉 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 37 | 36 14 | remul2d | ⊢ ( 𝜑  →  ( ℜ ‘ ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( 𝑈  /  𝑉 ) ) )  =  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( ℜ ‘ ( 𝑈  /  𝑉 ) ) ) ) | 
						
							| 38 | 35 37 | eqtr4d | ⊢ ( 𝜑  →  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  ·  ( ( abs ‘ 𝑉 ) ↑ 2 ) )  =  ( ℜ ‘ ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( 𝑈  /  𝑉 ) ) ) ) | 
						
							| 39 | 1 31 2 4 | div12d | ⊢ ( 𝜑  →  ( 𝑈  ·  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  /  𝑉 ) )  =  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( 𝑈  /  𝑉 ) ) ) | 
						
							| 40 | 31 2 4 | divrecd | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  /  𝑉 )  =  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( 1  /  𝑉 ) ) ) | 
						
							| 41 |  | recval | ⊢ ( ( 𝑉  ∈  ℂ  ∧  𝑉  ≠  0 )  →  ( 1  /  𝑉 )  =  ( ( ∗ ‘ 𝑉 )  /  ( ( abs ‘ 𝑉 ) ↑ 2 ) ) ) | 
						
							| 42 | 2 4 41 | syl2anc | ⊢ ( 𝜑  →  ( 1  /  𝑉 )  =  ( ( ∗ ‘ 𝑉 )  /  ( ( abs ‘ 𝑉 ) ↑ 2 ) ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( 1  /  𝑉 ) )  =  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( ( ∗ ‘ 𝑉 )  /  ( ( abs ‘ 𝑉 ) ↑ 2 ) ) ) ) | 
						
							| 44 | 2 | cjcld | ⊢ ( 𝜑  →  ( ∗ ‘ 𝑉 )  ∈  ℂ ) | 
						
							| 45 |  | sqne0 | ⊢ ( ( abs ‘ 𝑉 )  ∈  ℂ  →  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ≠  0  ↔  ( abs ‘ 𝑉 )  ≠  0 ) ) | 
						
							| 46 | 18 45 | syl | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ≠  0  ↔  ( abs ‘ 𝑉 )  ≠  0 ) ) | 
						
							| 47 | 19 46 | mpbird | ⊢ ( 𝜑  →  ( ( abs ‘ 𝑉 ) ↑ 2 )  ≠  0 ) | 
						
							| 48 | 44 31 47 | divcan2d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( ( ∗ ‘ 𝑉 )  /  ( ( abs ‘ 𝑉 ) ↑ 2 ) ) )  =  ( ∗ ‘ 𝑉 ) ) | 
						
							| 49 | 43 48 | eqtrd | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( 1  /  𝑉 ) )  =  ( ∗ ‘ 𝑉 ) ) | 
						
							| 50 | 40 49 | eqtrd | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  /  𝑉 )  =  ( ∗ ‘ 𝑉 ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( 𝜑  →  ( 𝑈  ·  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  /  𝑉 ) )  =  ( 𝑈  ·  ( ∗ ‘ 𝑉 ) ) ) | 
						
							| 52 | 39 51 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( 𝑈  /  𝑉 ) )  =  ( 𝑈  ·  ( ∗ ‘ 𝑉 ) ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( 𝜑  →  ( ℜ ‘ ( ( ( abs ‘ 𝑉 ) ↑ 2 )  ·  ( 𝑈  /  𝑉 ) ) )  =  ( ℜ ‘ ( 𝑈  ·  ( ∗ ‘ 𝑉 ) ) ) ) | 
						
							| 54 | 38 53 | eqtrd | ⊢ ( 𝜑  →  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  ·  ( ( abs ‘ 𝑉 ) ↑ 2 ) )  =  ( ℜ ‘ ( 𝑈  ·  ( ∗ ‘ 𝑉 ) ) ) ) | 
						
							| 55 | 24 34 54 | 3eqtr2rd | ⊢ ( 𝜑  →  ( ℜ ‘ ( 𝑈  ·  ( ∗ ‘ 𝑉 ) ) )  =  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  /  ( abs ‘ ( 𝑈  /  𝑉 ) ) ) ) ) | 
						
							| 56 | 55 | oveq2d | ⊢ ( 𝜑  →  ( 2  ·  ( ℜ ‘ ( 𝑈  ·  ( ∗ ‘ 𝑉 ) ) ) )  =  ( 2  ·  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  /  ( abs ‘ ( 𝑈  /  𝑉 ) ) ) ) ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ 𝑈 ) ↑ 2 )  +  ( ( abs ‘ 𝑉 ) ↑ 2 ) )  −  ( 2  ·  ( ℜ ‘ ( 𝑈  ·  ( ∗ ‘ 𝑉 ) ) ) ) )  =  ( ( ( ( abs ‘ 𝑈 ) ↑ 2 )  +  ( ( abs ‘ 𝑉 ) ↑ 2 ) )  −  ( 2  ·  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  /  ( abs ‘ ( 𝑈  /  𝑉 ) ) ) ) ) ) ) | 
						
							| 58 | 6 57 | eqtrd | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝑈  −  𝑉 ) ) ↑ 2 )  =  ( ( ( ( abs ‘ 𝑈 ) ↑ 2 )  +  ( ( abs ‘ 𝑉 ) ↑ 2 ) )  −  ( 2  ·  ( ( ( abs ‘ 𝑈 )  ·  ( abs ‘ 𝑉 ) )  ·  ( ( ℜ ‘ ( 𝑈  /  𝑉 ) )  /  ( abs ‘ ( 𝑈  /  𝑉 ) ) ) ) ) ) ) |