Step |
Hyp |
Ref |
Expression |
1 |
|
lawcoslem1.1 |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
2 |
|
lawcoslem1.2 |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
3 |
|
lawcoslem1.3 |
⊢ ( 𝜑 → 𝑈 ≠ 0 ) |
4 |
|
lawcoslem1.4 |
⊢ ( 𝜑 → 𝑉 ≠ 0 ) |
5 |
|
sqabssub |
⊢ ( ( 𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ) → ( ( abs ‘ ( 𝑈 − 𝑉 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝑈 ) ↑ 2 ) + ( ( abs ‘ 𝑉 ) ↑ 2 ) ) − ( 2 · ( ℜ ‘ ( 𝑈 · ( ∗ ‘ 𝑉 ) ) ) ) ) ) |
6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑈 − 𝑉 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝑈 ) ↑ 2 ) + ( ( abs ‘ 𝑉 ) ↑ 2 ) ) − ( 2 · ( ℜ ‘ ( 𝑈 · ( ∗ ‘ 𝑉 ) ) ) ) ) ) |
7 |
1 2 4
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑈 / 𝑉 ) ) = ( ( abs ‘ 𝑈 ) / ( abs ‘ 𝑉 ) ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) / ( abs ‘ ( 𝑈 / 𝑉 ) ) ) = ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) / ( ( abs ‘ 𝑈 ) / ( abs ‘ 𝑉 ) ) ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) / ( abs ‘ ( 𝑈 / 𝑉 ) ) ) ) = ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) / ( ( abs ‘ 𝑈 ) / ( abs ‘ 𝑉 ) ) ) ) ) |
10 |
1
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑈 ) ∈ ℝ ) |
11 |
2
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑉 ) ∈ ℝ ) |
12 |
10 11
|
remulcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) ∈ ℝ ) |
13 |
12
|
recnd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) ∈ ℂ ) |
14 |
1 2 4
|
divcld |
⊢ ( 𝜑 → ( 𝑈 / 𝑉 ) ∈ ℂ ) |
15 |
14
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝑈 / 𝑉 ) ) ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝑈 / 𝑉 ) ) ∈ ℂ ) |
17 |
10
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝑈 ) ∈ ℂ ) |
18 |
11
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝑉 ) ∈ ℂ ) |
19 |
2 4
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ 𝑉 ) ≠ 0 ) |
20 |
17 18 19
|
divcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝑈 ) / ( abs ‘ 𝑉 ) ) ∈ ℂ ) |
21 |
1 3
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ 𝑈 ) ≠ 0 ) |
22 |
17 18 21 19
|
divne0d |
⊢ ( 𝜑 → ( ( abs ‘ 𝑈 ) / ( abs ‘ 𝑉 ) ) ≠ 0 ) |
23 |
13 16 20 22
|
div12d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) / ( ( abs ‘ 𝑈 ) / ( abs ‘ 𝑉 ) ) ) ) = ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) · ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) / ( ( abs ‘ 𝑈 ) / ( abs ‘ 𝑉 ) ) ) ) ) |
24 |
9 23
|
eqtrd |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) / ( abs ‘ ( 𝑈 / 𝑉 ) ) ) ) = ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) · ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) / ( ( abs ‘ 𝑈 ) / ( abs ‘ 𝑉 ) ) ) ) ) |
25 |
13 17 18 21 19
|
divdiv2d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) / ( ( abs ‘ 𝑈 ) / ( abs ‘ 𝑉 ) ) ) = ( ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( abs ‘ 𝑉 ) ) / ( abs ‘ 𝑈 ) ) ) |
26 |
18
|
sqvald |
⊢ ( 𝜑 → ( ( abs ‘ 𝑉 ) ↑ 2 ) = ( ( abs ‘ 𝑉 ) · ( abs ‘ 𝑉 ) ) ) |
27 |
26
|
oveq1d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( abs ‘ 𝑈 ) ) = ( ( ( abs ‘ 𝑉 ) · ( abs ‘ 𝑉 ) ) · ( abs ‘ 𝑈 ) ) ) |
28 |
17 18 18
|
mul31d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( abs ‘ 𝑉 ) ) = ( ( ( abs ‘ 𝑉 ) · ( abs ‘ 𝑉 ) ) · ( abs ‘ 𝑈 ) ) ) |
29 |
27 28
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( abs ‘ 𝑈 ) ) = ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( abs ‘ 𝑉 ) ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( abs ‘ 𝑈 ) ) / ( abs ‘ 𝑈 ) ) = ( ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( abs ‘ 𝑉 ) ) / ( abs ‘ 𝑈 ) ) ) |
31 |
18
|
sqcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝑉 ) ↑ 2 ) ∈ ℂ ) |
32 |
31 17 21
|
divcan4d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( abs ‘ 𝑈 ) ) / ( abs ‘ 𝑈 ) ) = ( ( abs ‘ 𝑉 ) ↑ 2 ) ) |
33 |
25 30 32
|
3eqtr2rd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑉 ) ↑ 2 ) = ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) / ( ( abs ‘ 𝑈 ) / ( abs ‘ 𝑉 ) ) ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) · ( ( abs ‘ 𝑉 ) ↑ 2 ) ) = ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) · ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) / ( ( abs ‘ 𝑈 ) / ( abs ‘ 𝑉 ) ) ) ) ) |
35 |
16 31
|
mulcomd |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) · ( ( abs ‘ 𝑉 ) ↑ 2 ) ) = ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( ℜ ‘ ( 𝑈 / 𝑉 ) ) ) ) |
36 |
11
|
resqcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝑉 ) ↑ 2 ) ∈ ℝ ) |
37 |
36 14
|
remul2d |
⊢ ( 𝜑 → ( ℜ ‘ ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( 𝑈 / 𝑉 ) ) ) = ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( ℜ ‘ ( 𝑈 / 𝑉 ) ) ) ) |
38 |
35 37
|
eqtr4d |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) · ( ( abs ‘ 𝑉 ) ↑ 2 ) ) = ( ℜ ‘ ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( 𝑈 / 𝑉 ) ) ) ) |
39 |
1 31 2 4
|
div12d |
⊢ ( 𝜑 → ( 𝑈 · ( ( ( abs ‘ 𝑉 ) ↑ 2 ) / 𝑉 ) ) = ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( 𝑈 / 𝑉 ) ) ) |
40 |
31 2 4
|
divrecd |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑉 ) ↑ 2 ) / 𝑉 ) = ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( 1 / 𝑉 ) ) ) |
41 |
|
recval |
⊢ ( ( 𝑉 ∈ ℂ ∧ 𝑉 ≠ 0 ) → ( 1 / 𝑉 ) = ( ( ∗ ‘ 𝑉 ) / ( ( abs ‘ 𝑉 ) ↑ 2 ) ) ) |
42 |
2 4 41
|
syl2anc |
⊢ ( 𝜑 → ( 1 / 𝑉 ) = ( ( ∗ ‘ 𝑉 ) / ( ( abs ‘ 𝑉 ) ↑ 2 ) ) ) |
43 |
42
|
oveq2d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( 1 / 𝑉 ) ) = ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( ( ∗ ‘ 𝑉 ) / ( ( abs ‘ 𝑉 ) ↑ 2 ) ) ) ) |
44 |
2
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ 𝑉 ) ∈ ℂ ) |
45 |
|
sqne0 |
⊢ ( ( abs ‘ 𝑉 ) ∈ ℂ → ( ( ( abs ‘ 𝑉 ) ↑ 2 ) ≠ 0 ↔ ( abs ‘ 𝑉 ) ≠ 0 ) ) |
46 |
18 45
|
syl |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑉 ) ↑ 2 ) ≠ 0 ↔ ( abs ‘ 𝑉 ) ≠ 0 ) ) |
47 |
19 46
|
mpbird |
⊢ ( 𝜑 → ( ( abs ‘ 𝑉 ) ↑ 2 ) ≠ 0 ) |
48 |
44 31 47
|
divcan2d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( ( ∗ ‘ 𝑉 ) / ( ( abs ‘ 𝑉 ) ↑ 2 ) ) ) = ( ∗ ‘ 𝑉 ) ) |
49 |
43 48
|
eqtrd |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( 1 / 𝑉 ) ) = ( ∗ ‘ 𝑉 ) ) |
50 |
40 49
|
eqtrd |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑉 ) ↑ 2 ) / 𝑉 ) = ( ∗ ‘ 𝑉 ) ) |
51 |
50
|
oveq2d |
⊢ ( 𝜑 → ( 𝑈 · ( ( ( abs ‘ 𝑉 ) ↑ 2 ) / 𝑉 ) ) = ( 𝑈 · ( ∗ ‘ 𝑉 ) ) ) |
52 |
39 51
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( 𝑈 / 𝑉 ) ) = ( 𝑈 · ( ∗ ‘ 𝑉 ) ) ) |
53 |
52
|
fveq2d |
⊢ ( 𝜑 → ( ℜ ‘ ( ( ( abs ‘ 𝑉 ) ↑ 2 ) · ( 𝑈 / 𝑉 ) ) ) = ( ℜ ‘ ( 𝑈 · ( ∗ ‘ 𝑉 ) ) ) ) |
54 |
38 53
|
eqtrd |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) · ( ( abs ‘ 𝑉 ) ↑ 2 ) ) = ( ℜ ‘ ( 𝑈 · ( ∗ ‘ 𝑉 ) ) ) ) |
55 |
24 34 54
|
3eqtr2rd |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝑈 · ( ∗ ‘ 𝑉 ) ) ) = ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) / ( abs ‘ ( 𝑈 / 𝑉 ) ) ) ) ) |
56 |
55
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( ℜ ‘ ( 𝑈 · ( ∗ ‘ 𝑉 ) ) ) ) = ( 2 · ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) / ( abs ‘ ( 𝑈 / 𝑉 ) ) ) ) ) ) |
57 |
56
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝑈 ) ↑ 2 ) + ( ( abs ‘ 𝑉 ) ↑ 2 ) ) − ( 2 · ( ℜ ‘ ( 𝑈 · ( ∗ ‘ 𝑉 ) ) ) ) ) = ( ( ( ( abs ‘ 𝑈 ) ↑ 2 ) + ( ( abs ‘ 𝑉 ) ↑ 2 ) ) − ( 2 · ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) / ( abs ‘ ( 𝑈 / 𝑉 ) ) ) ) ) ) ) |
58 |
6 57
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑈 − 𝑉 ) ) ↑ 2 ) = ( ( ( ( abs ‘ 𝑈 ) ↑ 2 ) + ( ( abs ‘ 𝑉 ) ↑ 2 ) ) − ( 2 · ( ( ( abs ‘ 𝑈 ) · ( abs ‘ 𝑉 ) ) · ( ( ℜ ‘ ( 𝑈 / 𝑉 ) ) / ( abs ‘ ( 𝑈 / 𝑉 ) ) ) ) ) ) ) |