Metamath Proof Explorer


Theorem lbfzo0

Description: An integer is strictly greater than zero iff it is a member of NN . (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion lbfzo0 ( 0 ∈ ( 0 ..^ 𝐴 ) ↔ 𝐴 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 0z 0 ∈ ℤ
2 3anass ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴 ) ↔ ( 0 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 0 < 𝐴 ) ) )
3 1 2 mpbiran ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴 ) ↔ ( 𝐴 ∈ ℤ ∧ 0 < 𝐴 ) )
4 fzolb ( 0 ∈ ( 0 ..^ 𝐴 ) ↔ ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 < 𝐴 ) )
5 elnnz ( 𝐴 ∈ ℕ ↔ ( 𝐴 ∈ ℤ ∧ 0 < 𝐴 ) )
6 3 4 5 3bitr4i ( 0 ∈ ( 0 ..^ 𝐴 ) ↔ 𝐴 ∈ ℕ )