Metamath Proof Explorer


Theorem lbicc2

Description: The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007) (Revised by FL, 29-May-2014) (Revised by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion lbicc2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴 ∈ ℝ* )
2 xrleid ( 𝐴 ∈ ℝ*𝐴𝐴 )
3 2 3ad2ant1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴𝐴 )
4 simp3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴𝐵 )
5 elicc1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵 ) ) )
6 5 3adant3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵 ) ) )
7 1 3 4 6 mpbir3and ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) )