Description: The lower bound belongs to a closed-below, open-above interval. See lbicc2 . (Contributed by FL, 29-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | lbico1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) | |
2 | xrleid | ⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴 ) | |
3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐴 ) |
4 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
5 | elico1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) | |
6 | 5 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |
7 | 1 3 4 6 | mpbir3and | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ) |