Metamath Proof Explorer


Theorem lbico1

Description: The lower bound belongs to a closed-below, open-above interval. See lbicc2 . (Contributed by FL, 29-May-2014)

Ref Expression
Assertion lbico1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵 ) → 𝐴 ∈ ( 𝐴 [,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* )
2 xrleid ( 𝐴 ∈ ℝ*𝐴𝐴 )
3 2 3ad2ant1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵 ) → 𝐴𝐴 )
4 simp3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵 ) → 𝐴 < 𝐵 )
5 elico1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐴 ∈ ℝ*𝐴𝐴𝐴 < 𝐵 ) ) )
6 5 3adant3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵 ) → ( 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐴 ∈ ℝ*𝐴𝐴𝐴 < 𝐵 ) ) )
7 1 3 4 6 mpbir3and ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵 ) → 𝐴 ∈ ( 𝐴 [,) 𝐵 ) )