Metamath Proof Explorer


Theorem lbinfle

Description: If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005) (Revised by AV, 4-Sep-2020)

Ref Expression
Assertion lbinfle ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 lbinf ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦 ) → inf ( 𝑆 , ℝ , < ) = ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) )
2 1 3adant3 ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆 ) → inf ( 𝑆 , ℝ , < ) = ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) )
3 lble ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆 ) → ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝐴 )
4 2 3 eqbrtrd ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 )