Metamath Proof Explorer


Theorem lbioc

Description: A left-open right-closed interval does not contain its left endpoint. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion lbioc ¬ 𝐴 ∈ ( 𝐴 (,] 𝐵 )

Proof

Step Hyp Ref Expression
1 df-ioc (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧𝑦 ) } )
2 1 elixx3g ( 𝐴 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ* ) ∧ ( 𝐴 < 𝐴𝐴𝐵 ) ) )
3 2 biimpi ( 𝐴 ∈ ( 𝐴 (,] 𝐵 ) → ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ* ) ∧ ( 𝐴 < 𝐴𝐴𝐵 ) ) )
4 3 simprld ( 𝐴 ∈ ( 𝐴 (,] 𝐵 ) → 𝐴 < 𝐴 )
5 1 elmpocl1 ( 𝐴 ∈ ( 𝐴 (,] 𝐵 ) → 𝐴 ∈ ℝ* )
6 xrltnr ( 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴 )
7 5 6 syl ( 𝐴 ∈ ( 𝐴 (,] 𝐵 ) → ¬ 𝐴 < 𝐴 )
8 4 7 pm2.65i ¬ 𝐴 ∈ ( 𝐴 (,] 𝐵 )