Description: A left-open right-closed interval does not contain its left endpoint. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | lbioc | ⊢ ¬ 𝐴 ∈ ( 𝐴 (,] 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioc | ⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
2 | 1 | elixx3g | ⊢ ( 𝐴 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ( 𝐴 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
3 | 2 | biimpi | ⊢ ( 𝐴 ∈ ( 𝐴 (,] 𝐵 ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ( 𝐴 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
4 | 3 | simprld | ⊢ ( 𝐴 ∈ ( 𝐴 (,] 𝐵 ) → 𝐴 < 𝐴 ) |
5 | 1 | elmpocl1 | ⊢ ( 𝐴 ∈ ( 𝐴 (,] 𝐵 ) → 𝐴 ∈ ℝ* ) |
6 | xrltnr | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴 ) | |
7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ( 𝐴 (,] 𝐵 ) → ¬ 𝐴 < 𝐴 ) |
8 | 4 7 | pm2.65i | ⊢ ¬ 𝐴 ∈ ( 𝐴 (,] 𝐵 ) |