Description: An open interval does not contain its left endpoint. (Contributed by Mario Carneiro, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lbioo | ⊢ ¬ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo3g | ⊢ ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ( 𝐴 < 𝐴 ∧ 𝐴 < 𝐵 ) ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐴 ∧ 𝐴 < 𝐵 ) ) |
| 3 | 2 | simpld | ⊢ ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 < 𝐴 ) |
| 4 | 1 | simplbi | ⊢ ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ) |
| 5 | 4 | simp3d | ⊢ ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 6 | xrltnr | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 𝐴 < 𝐴 ) |
| 8 | 3 7 | pm2.65i | ⊢ ¬ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) |