Metamath Proof Explorer


Theorem lbioo

Description: An open interval does not contain its left endpoint. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Assertion lbioo ¬ 𝐴 ∈ ( 𝐴 (,) 𝐵 )

Proof

Step Hyp Ref Expression
1 elioo3g ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ* ) ∧ ( 𝐴 < 𝐴𝐴 < 𝐵 ) ) )
2 1 simprbi ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐴𝐴 < 𝐵 ) )
3 2 simpld ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 < 𝐴 )
4 1 simplbi ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ* ) )
5 4 simp3d ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 ∈ ℝ* )
6 xrltnr ( 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴 )
7 5 6 syl ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 𝐴 < 𝐴 )
8 3 7 pm2.65i ¬ 𝐴 ∈ ( 𝐴 (,) 𝐵 )