Metamath Proof Explorer


Theorem lble

Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion lble ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆 ) → ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 lbreu ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦 ) → ∃! 𝑥𝑆𝑦𝑆 𝑥𝑦 )
2 nfcv 𝑥 𝑆
3 nfriota1 𝑥 ( 𝑥𝑆𝑦𝑆 𝑥𝑦 )
4 nfcv 𝑥
5 nfcv 𝑥 𝑦
6 3 4 5 nfbr 𝑥 ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝑦
7 2 6 nfralw 𝑥𝑦𝑆 ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝑦
8 eqid ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) = ( 𝑥𝑆𝑦𝑆 𝑥𝑦 )
9 nfra1 𝑦𝑦𝑆 𝑥𝑦
10 nfcv 𝑦 𝑆
11 9 10 nfriota 𝑦 ( 𝑥𝑆𝑦𝑆 𝑥𝑦 )
12 11 nfeq2 𝑦 𝑥 = ( 𝑥𝑆𝑦𝑆 𝑥𝑦 )
13 breq1 ( 𝑥 = ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) → ( 𝑥𝑦 ↔ ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝑦 ) )
14 12 13 ralbid ( 𝑥 = ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) → ( ∀ 𝑦𝑆 𝑥𝑦 ↔ ∀ 𝑦𝑆 ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝑦 ) )
15 7 8 14 riotaprop ( ∃! 𝑥𝑆𝑦𝑆 𝑥𝑦 → ( ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦𝑆 ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝑦 ) )
16 1 15 syl ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦 ) → ( ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦𝑆 ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝑦 ) )
17 16 simprd ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦 ) → ∀ 𝑦𝑆 ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝑦 )
18 nfcv 𝑦
19 nfcv 𝑦 𝐴
20 11 18 19 nfbr 𝑦 ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝐴
21 breq2 ( 𝑦 = 𝐴 → ( ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝑦 ↔ ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝐴 ) )
22 20 21 rspc ( 𝐴𝑆 → ( ∀ 𝑦𝑆 ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝑦 → ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝐴 ) )
23 17 22 mpan9 ( ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ∧ 𝐴𝑆 ) → ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝐴 )
24 23 3impa ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆 ) → ( 𝑥𝑆𝑦𝑆 𝑥𝑦 ) ≤ 𝐴 )