Step |
Hyp |
Ref |
Expression |
1 |
|
lbreu |
⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ∃! 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) |
2 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑆 |
3 |
|
nfriota1 |
⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
6 |
3 4 5
|
nfbr |
⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 |
7 |
2 6
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 |
8 |
|
eqid |
⊢ ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) = ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) |
9 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 |
10 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑆 |
11 |
9 10
|
nfriota |
⊢ Ⅎ 𝑦 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) |
12 |
11
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑥 = ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) |
13 |
|
breq1 |
⊢ ( 𝑥 = ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ( 𝑥 ≤ 𝑦 ↔ ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ) ) |
14 |
12 13
|
ralbid |
⊢ ( 𝑥 = ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ) ) |
15 |
7 8 14
|
riotaprop |
⊢ ( ∃! 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → ( ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ) ) |
16 |
1 15
|
syl |
⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ( ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ) ) |
17 |
16
|
simprd |
⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑦 ≤ |
19 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
20 |
11 18 19
|
nfbr |
⊢ Ⅎ 𝑦 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝐴 |
21 |
|
breq2 |
⊢ ( 𝑦 = 𝐴 → ( ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 ↔ ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝐴 ) ) |
22 |
20 21
|
rspc |
⊢ ( 𝐴 ∈ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝑦 → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝐴 ) ) |
23 |
17 22
|
mpan9 |
⊢ ( ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝑆 ) → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝐴 ) |
24 |
23
|
3impa |
⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆 ) → ( ℩ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) ≤ 𝐴 ) |