Metamath Proof Explorer


Theorem lbreu

Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005)

Ref Expression
Assertion lbreu ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦 ) → ∃! 𝑥𝑆𝑦𝑆 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑦 = 𝑤 → ( 𝑥𝑦𝑥𝑤 ) )
2 1 rspcv ( 𝑤𝑆 → ( ∀ 𝑦𝑆 𝑥𝑦𝑥𝑤 ) )
3 breq2 ( 𝑦 = 𝑥 → ( 𝑤𝑦𝑤𝑥 ) )
4 3 rspcv ( 𝑥𝑆 → ( ∀ 𝑦𝑆 𝑤𝑦𝑤𝑥 ) )
5 2 4 im2anan9r ( ( 𝑥𝑆𝑤𝑆 ) → ( ( ∀ 𝑦𝑆 𝑥𝑦 ∧ ∀ 𝑦𝑆 𝑤𝑦 ) → ( 𝑥𝑤𝑤𝑥 ) ) )
6 ssel ( 𝑆 ⊆ ℝ → ( 𝑥𝑆𝑥 ∈ ℝ ) )
7 ssel ( 𝑆 ⊆ ℝ → ( 𝑤𝑆𝑤 ∈ ℝ ) )
8 6 7 anim12d ( 𝑆 ⊆ ℝ → ( ( 𝑥𝑆𝑤𝑆 ) → ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ) )
9 8 impcom ( ( ( 𝑥𝑆𝑤𝑆 ) ∧ 𝑆 ⊆ ℝ ) → ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ) )
10 letri3 ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ( 𝑥 = 𝑤 ↔ ( 𝑥𝑤𝑤𝑥 ) ) )
11 9 10 syl ( ( ( 𝑥𝑆𝑤𝑆 ) ∧ 𝑆 ⊆ ℝ ) → ( 𝑥 = 𝑤 ↔ ( 𝑥𝑤𝑤𝑥 ) ) )
12 11 exbiri ( ( 𝑥𝑆𝑤𝑆 ) → ( 𝑆 ⊆ ℝ → ( ( 𝑥𝑤𝑤𝑥 ) → 𝑥 = 𝑤 ) ) )
13 12 com23 ( ( 𝑥𝑆𝑤𝑆 ) → ( ( 𝑥𝑤𝑤𝑥 ) → ( 𝑆 ⊆ ℝ → 𝑥 = 𝑤 ) ) )
14 5 13 syld ( ( 𝑥𝑆𝑤𝑆 ) → ( ( ∀ 𝑦𝑆 𝑥𝑦 ∧ ∀ 𝑦𝑆 𝑤𝑦 ) → ( 𝑆 ⊆ ℝ → 𝑥 = 𝑤 ) ) )
15 14 com3r ( 𝑆 ⊆ ℝ → ( ( 𝑥𝑆𝑤𝑆 ) → ( ( ∀ 𝑦𝑆 𝑥𝑦 ∧ ∀ 𝑦𝑆 𝑤𝑦 ) → 𝑥 = 𝑤 ) ) )
16 15 ralrimivv ( 𝑆 ⊆ ℝ → ∀ 𝑥𝑆𝑤𝑆 ( ( ∀ 𝑦𝑆 𝑥𝑦 ∧ ∀ 𝑦𝑆 𝑤𝑦 ) → 𝑥 = 𝑤 ) )
17 16 anim1ci ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦 ) → ( ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀ 𝑥𝑆𝑤𝑆 ( ( ∀ 𝑦𝑆 𝑥𝑦 ∧ ∀ 𝑦𝑆 𝑤𝑦 ) → 𝑥 = 𝑤 ) ) )
18 breq1 ( 𝑥 = 𝑤 → ( 𝑥𝑦𝑤𝑦 ) )
19 18 ralbidv ( 𝑥 = 𝑤 → ( ∀ 𝑦𝑆 𝑥𝑦 ↔ ∀ 𝑦𝑆 𝑤𝑦 ) )
20 19 reu4 ( ∃! 𝑥𝑆𝑦𝑆 𝑥𝑦 ↔ ( ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀ 𝑥𝑆𝑤𝑆 ( ( ∀ 𝑦𝑆 𝑥𝑦 ∧ ∀ 𝑦𝑆 𝑤𝑦 ) → 𝑥 = 𝑤 ) ) )
21 17 20 sylibr ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥𝑆𝑦𝑆 𝑥𝑦 ) → ∃! 𝑥𝑆𝑦𝑆 𝑥𝑦 )