Description: Every vector space has a basis. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 25-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lbsex.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
Assertion | lbsex | ⊢ ( 𝑊 ∈ LVec → 𝐽 ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsex.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
2 | axac3 | ⊢ CHOICE | |
3 | 1 | lbsexg | ⊢ ( ( CHOICE ∧ 𝑊 ∈ LVec ) → 𝐽 ≠ ∅ ) |
4 | 2 3 | mpan | ⊢ ( 𝑊 ∈ LVec → 𝐽 ≠ ∅ ) |