Metamath Proof Explorer


Theorem lbsex

Description: Every vector space has a basis. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypothesis lbsex.j 𝐽 = ( LBasis ‘ 𝑊 )
Assertion lbsex ( 𝑊 ∈ LVec → 𝐽 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 lbsex.j 𝐽 = ( LBasis ‘ 𝑊 )
2 axac3 CHOICE
3 1 lbsexg ( ( CHOICE𝑊 ∈ LVec ) → 𝐽 ≠ ∅ )
4 2 3 mpan ( 𝑊 ∈ LVec → 𝐽 ≠ ∅ )