Step |
Hyp |
Ref |
Expression |
1 |
|
lbsex.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
2 |
|
id |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LVec ) |
3 |
|
fvex |
⊢ ( Base ‘ 𝑊 ) ∈ V |
4 |
3
|
pwex |
⊢ 𝒫 ( Base ‘ 𝑊 ) ∈ V |
5 |
|
dfac10 |
⊢ ( CHOICE ↔ dom card = V ) |
6 |
5
|
biimpi |
⊢ ( CHOICE → dom card = V ) |
7 |
4 6
|
eleqtrrid |
⊢ ( CHOICE → 𝒫 ( Base ‘ 𝑊 ) ∈ dom card ) |
8 |
|
0ss |
⊢ ∅ ⊆ ( Base ‘ 𝑊 ) |
9 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ∅ ∖ { 𝑥 } ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
12 |
1 10 11
|
lbsextg |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 ( Base ‘ 𝑊 ) ∈ dom card ) ∧ ∅ ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ∅ ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( ∅ ∖ { 𝑥 } ) ) ) → ∃ 𝑠 ∈ 𝐽 ∅ ⊆ 𝑠 ) |
13 |
8 9 12
|
mp3an23 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝒫 ( Base ‘ 𝑊 ) ∈ dom card ) → ∃ 𝑠 ∈ 𝐽 ∅ ⊆ 𝑠 ) |
14 |
2 7 13
|
syl2anr |
⊢ ( ( CHOICE ∧ 𝑊 ∈ LVec ) → ∃ 𝑠 ∈ 𝐽 ∅ ⊆ 𝑠 ) |
15 |
|
rexn0 |
⊢ ( ∃ 𝑠 ∈ 𝐽 ∅ ⊆ 𝑠 → 𝐽 ≠ ∅ ) |
16 |
14 15
|
syl |
⊢ ( ( CHOICE ∧ 𝑊 ∈ LVec ) → 𝐽 ≠ ∅ ) |