Database
BASIC ALGEBRAIC STRUCTURES
Vector spaces
Definition and basic properties
lbsext
Metamath Proof Explorer
Description: For any linearly independent subset C of V , there is a basis
containing the vectors in C . (Contributed by Mario Carneiro , 25-Jun-2014) (Revised by Mario Carneiro , 17-May-2015)
Ref
Expression
Hypotheses
lbsex.j
⊢ 𝐽 = ( LBasis ‘ 𝑊 )
lbsex.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
lbsex.n
⊢ 𝑁 = ( LSpan ‘ 𝑊 )
Assertion
lbsext
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠 )
Proof
Step
Hyp
Ref
Expression
1
lbsex.j
⊢ 𝐽 = ( LBasis ‘ 𝑊 )
2
lbsex.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
3
lbsex.n
⊢ 𝑁 = ( LSpan ‘ 𝑊 )
4
2
fvexi
⊢ 𝑉 ∈ V
5
4
pwex
⊢ 𝒫 𝑉 ∈ V
6
numth3
⊢ ( 𝒫 𝑉 ∈ V → 𝒫 𝑉 ∈ dom card )
7
5 6
ax-mp
⊢ 𝒫 𝑉 ∈ dom card
8
7
jctr
⊢ ( 𝑊 ∈ LVec → ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) )
9
1 2 3
lbsextg
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠 )
10
8 9
syl3an1
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠 )