Step |
Hyp |
Ref |
Expression |
1 |
|
lbsex.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
2 |
|
lbsex.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
lbsex.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
simp1l |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → 𝑊 ∈ LVec ) |
5 |
|
simp2 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → 𝐶 ⊆ 𝑉 ) |
6 |
|
simp3 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) |
7 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
8 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
9 |
8
|
difeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 ∖ { 𝑥 } ) = ( 𝐶 ∖ { 𝑦 } ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) |
11 |
7 10
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ↔ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) ) |
12 |
11
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ↔ ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) ) |
13 |
12
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ 𝐶 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) |
14 |
6 13
|
sylib |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∀ 𝑦 ∈ 𝐶 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑦 } ) ) ) |
15 |
8
|
difeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∖ { 𝑥 } ) = ( 𝑧 ∖ { 𝑦 } ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) |
17 |
7 16
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) ) |
18 |
17
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) ) |
19 |
18
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) |
20 |
19
|
anbi2i |
⊢ ( ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) ↔ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) ) |
21 |
20
|
rabbii |
⊢ { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) } = { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑦 ∈ 𝑧 ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑦 } ) ) ) } |
22 |
|
simp1r |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → 𝒫 𝑉 ∈ dom card ) |
23 |
2 1 3 4 5 14 21 22
|
lbsextlem4 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card ) ∧ 𝐶 ⊆ 𝑉 ∧ ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) → ∃ 𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠 ) |