Step |
Hyp |
Ref |
Expression |
1 |
|
lbsext.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lbsext.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
3 |
|
lbsext.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lbsext.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
lbsext.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝑉 ) |
6 |
|
lbsext.x |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) |
7 |
|
lbsext.s |
⊢ 𝑆 = { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) } |
8 |
|
lbsext.p |
⊢ 𝑃 = ( LSubSp ‘ 𝑊 ) |
9 |
|
lbsext.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
10 |
|
lbsext.z |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
11 |
|
lbsext.r |
⊢ ( 𝜑 → [⊊] Or 𝐴 ) |
12 |
|
lbsext.t |
⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) |
13 |
|
eqidd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
14 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
15 |
1
|
a1i |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) |
16 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) ) |
17 |
|
eqidd |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) ) |
18 |
8
|
a1i |
⊢ ( 𝜑 → 𝑃 = ( LSubSp ‘ 𝑊 ) ) |
19 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
20 |
4 19
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
21 |
7
|
ssrab3 |
⊢ 𝑆 ⊆ 𝒫 𝑉 |
22 |
9 21
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ 𝒫 𝑉 ) |
23 |
22
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝒫 𝑉 ) |
24 |
23
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ⊆ 𝑉 ) |
25 |
24
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ 𝑉 ) |
26 |
1 3
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑢 ∖ { 𝑥 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ) |
27 |
20 25 26
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ) |
28 |
27
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ) |
29 |
|
iunss |
⊢ ( ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ↔ ∀ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ) |
30 |
28 29
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ 𝑉 ) |
31 |
12 30
|
eqsstrid |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑉 ) |
32 |
12
|
a1i |
⊢ ( 𝜑 → 𝑇 = ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
33 |
1 8 3
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑢 ∖ { 𝑥 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ∈ 𝑃 ) |
34 |
20 25 33
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ∈ 𝑃 ) |
35 |
8
|
lssn0 |
⊢ ( ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ∈ 𝑃 → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
36 |
34 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
37 |
36
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
38 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) → ∃ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
39 |
10 37 38
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
40 |
|
iunn0 |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ↔ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
41 |
39 40
|
sylib |
⊢ ( 𝜑 → ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ≠ ∅ ) |
42 |
32 41
|
eqnetrd |
⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
43 |
12
|
eleq2i |
⊢ ( 𝑣 ∈ 𝑇 ↔ 𝑣 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
44 |
|
eliun |
⊢ ( 𝑣 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑢 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
45 |
|
difeq1 |
⊢ ( 𝑢 = 𝑚 → ( 𝑢 ∖ { 𝑥 } ) = ( 𝑚 ∖ { 𝑥 } ) ) |
46 |
45
|
fveq2d |
⊢ ( 𝑢 = 𝑚 → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ) |
47 |
46
|
eleq2d |
⊢ ( 𝑢 = 𝑚 → ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ) ) |
48 |
47
|
cbvrexvw |
⊢ ( ∃ 𝑢 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑚 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ) |
49 |
43 44 48
|
3bitri |
⊢ ( 𝑣 ∈ 𝑇 ↔ ∃ 𝑚 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ) |
50 |
12
|
eleq2i |
⊢ ( 𝑤 ∈ 𝑇 ↔ 𝑤 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
51 |
|
eliun |
⊢ ( 𝑤 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑢 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
52 |
|
difeq1 |
⊢ ( 𝑢 = 𝑛 → ( 𝑢 ∖ { 𝑥 } ) = ( 𝑛 ∖ { 𝑥 } ) ) |
53 |
52
|
fveq2d |
⊢ ( 𝑢 = 𝑛 → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) |
54 |
53
|
eleq2d |
⊢ ( 𝑢 = 𝑛 → ( 𝑤 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) |
55 |
54
|
cbvrexvw |
⊢ ( ∃ 𝑢 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑛 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) |
56 |
50 51 55
|
3bitri |
⊢ ( 𝑤 ∈ 𝑇 ↔ ∃ 𝑛 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) |
57 |
49 56
|
anbi12i |
⊢ ( ( 𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇 ) ↔ ( ∃ 𝑚 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ ∃ 𝑛 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) |
58 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ 𝐴 ∃ 𝑛 ∈ 𝐴 ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ↔ ( ∃ 𝑚 ∈ 𝐴 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ ∃ 𝑛 ∈ 𝐴 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) |
59 |
57 58
|
bitr4i |
⊢ ( ( 𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇 ) ↔ ∃ 𝑚 ∈ 𝐴 ∃ 𝑛 ∈ 𝐴 ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) |
60 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝜑 ) |
61 |
60 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → [⊊] Or 𝐴 ) |
62 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ) |
63 |
|
sorpssun |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ) → ( 𝑚 ∪ 𝑛 ) ∈ 𝐴 ) |
64 |
61 62 63
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑚 ∪ 𝑛 ) ∈ 𝐴 ) |
65 |
60 20
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑊 ∈ LMod ) |
66 |
|
elssuni |
⊢ ( ( 𝑚 ∪ 𝑛 ) ∈ 𝐴 → ( 𝑚 ∪ 𝑛 ) ⊆ ∪ 𝐴 ) |
67 |
64 66
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑚 ∪ 𝑛 ) ⊆ ∪ 𝐴 ) |
68 |
|
sspwuni |
⊢ ( 𝐴 ⊆ 𝒫 𝑉 ↔ ∪ 𝐴 ⊆ 𝑉 ) |
69 |
22 68
|
sylib |
⊢ ( 𝜑 → ∪ 𝐴 ⊆ 𝑉 ) |
70 |
60 69
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ∪ 𝐴 ⊆ 𝑉 ) |
71 |
67 70
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑚 ∪ 𝑛 ) ⊆ 𝑉 ) |
72 |
71
|
ssdifssd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ⊆ 𝑉 ) |
73 |
1 8 3
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ∈ 𝑃 ) |
74 |
65 72 73
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ∈ 𝑃 ) |
75 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
76 |
|
ssun1 |
⊢ 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) |
77 |
|
ssdif |
⊢ ( 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) → ( 𝑚 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) |
78 |
76 77
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑚 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) |
79 |
1 3
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ⊆ 𝑉 ∧ ( 𝑚 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) → ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
80 |
65 72 78 79
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
81 |
|
simp3l |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ) |
82 |
80 81
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑣 ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
83 |
|
ssun2 |
⊢ 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) |
84 |
|
ssdif |
⊢ ( 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) → ( 𝑛 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) |
85 |
83 84
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑛 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) |
86 |
1 3
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ⊆ 𝑉 ∧ ( 𝑛 ∖ { 𝑥 } ) ⊆ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) → ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
87 |
65 72 85 86
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
88 |
|
simp3r |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) |
89 |
87 88
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → 𝑤 ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
90 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
91 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
92 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
93 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
94 |
90 91 92 93 8
|
lsscl |
⊢ ( ( ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ∈ 𝑃 ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
95 |
74 75 82 89 94
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
96 |
|
difeq1 |
⊢ ( 𝑢 = ( 𝑚 ∪ 𝑛 ) → ( 𝑢 ∖ { 𝑥 } ) = ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) |
97 |
96
|
fveq2d |
⊢ ( 𝑢 = ( 𝑚 ∪ 𝑛 ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) |
98 |
97
|
eliuni |
⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ 𝐴 ∧ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ ( 𝑁 ‘ ( ( 𝑚 ∪ 𝑛 ) ∖ { 𝑥 } ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
99 |
64 95 98
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
100 |
99 12
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ∧ ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) |
101 |
100
|
3expia |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴 ) ) → ( ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) ) |
102 |
101
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ∃ 𝑚 ∈ 𝐴 ∃ 𝑛 ∈ 𝐴 ( 𝑣 ∈ ( 𝑁 ‘ ( 𝑚 ∖ { 𝑥 } ) ) ∧ 𝑤 ∈ ( 𝑁 ‘ ( 𝑛 ∖ { 𝑥 } ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) ) |
103 |
59 102
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇 ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) ) |
104 |
103
|
exp4b |
⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑣 ∈ 𝑇 → ( 𝑤 ∈ 𝑇 → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) ) ) ) |
105 |
104
|
3imp2 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑣 ∈ 𝑇 ∧ 𝑤 ∈ 𝑇 ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑣 ) ( +g ‘ 𝑊 ) 𝑤 ) ∈ 𝑇 ) |
106 |
13 14 15 16 17 18 31 42 105
|
islssd |
⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
107 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) → 𝑦 ∈ ∪ 𝐴 ) |
108 |
107
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ∈ ∪ 𝐴 ) |
109 |
|
eldifn |
⊢ ( 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) → ¬ 𝑦 ∈ { 𝑥 } ) |
110 |
109
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ¬ 𝑦 ∈ { 𝑥 } ) |
111 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝑢 ∖ { 𝑥 } ) ↔ ( 𝑦 ∈ 𝑢 ∧ ¬ 𝑦 ∈ { 𝑥 } ) ) |
112 |
1 3
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑢 ∖ { 𝑥 } ) ⊆ 𝑉 ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
113 |
20 25 112
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
114 |
113
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
115 |
114
|
sseld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑢 ∖ { 𝑥 } ) → 𝑦 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
116 |
111 115
|
syl5bir |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝑢 ∧ ¬ 𝑦 ∈ { 𝑥 } ) → 𝑦 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
117 |
110 116
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑢 → 𝑦 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
118 |
117
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → ( ∃ 𝑢 ∈ 𝐴 𝑦 ∈ 𝑢 → ∃ 𝑢 ∈ 𝐴 𝑦 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
119 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑢 ∈ 𝐴 𝑦 ∈ 𝑢 ) |
120 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑢 ∈ 𝐴 𝑦 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
121 |
118 119 120
|
3imtr4g |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
122 |
108 121
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → 𝑦 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
123 |
122
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ∪ 𝐴 ∖ { 𝑥 } ) → 𝑦 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
124 |
123
|
ssrdv |
⊢ ( 𝜑 → ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
125 |
124 12
|
sseqtrrdi |
⊢ ( 𝜑 → ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ 𝑇 ) |
126 |
106 125
|
jca |
⊢ ( 𝜑 → ( 𝑇 ∈ 𝑃 ∧ ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ 𝑇 ) ) |