| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lbsss.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lbsss.j | ⊢ 𝐽  =  ( LBasis ‘ 𝑊 ) | 
						
							| 3 |  | lbssp.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | lbsind.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | lbsind.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | lbsind.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 7 |  | lbsind.z | ⊢  0   =  ( 0g ‘ 𝐹 ) | 
						
							| 8 |  | eldifsn | ⊢ ( 𝐴  ∈  ( 𝐾  ∖  {  0  } )  ↔  ( 𝐴  ∈  𝐾  ∧  𝐴  ≠   0  ) ) | 
						
							| 9 |  | elfvdm | ⊢ ( 𝐵  ∈  ( LBasis ‘ 𝑊 )  →  𝑊  ∈  dom  LBasis ) | 
						
							| 10 | 9 2 | eleq2s | ⊢ ( 𝐵  ∈  𝐽  →  𝑊  ∈  dom  LBasis ) | 
						
							| 11 | 1 4 5 6 2 3 7 | islbs | ⊢ ( 𝑊  ∈  dom  LBasis  →  ( 𝐵  ∈  𝐽  ↔  ( 𝐵  ⊆  𝑉  ∧  ( 𝑁 ‘ 𝐵 )  =  𝑉  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  ( 𝐾  ∖  {  0  } ) ¬  ( 𝑦  ·  𝑥 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝑥 } ) ) ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝐵  ∈  𝐽  →  ( 𝐵  ∈  𝐽  ↔  ( 𝐵  ⊆  𝑉  ∧  ( 𝑁 ‘ 𝐵 )  =  𝑉  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  ( 𝐾  ∖  {  0  } ) ¬  ( 𝑦  ·  𝑥 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝑥 } ) ) ) ) ) | 
						
							| 13 | 12 | ibi | ⊢ ( 𝐵  ∈  𝐽  →  ( 𝐵  ⊆  𝑉  ∧  ( 𝑁 ‘ 𝐵 )  =  𝑉  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  ( 𝐾  ∖  {  0  } ) ¬  ( 𝑦  ·  𝑥 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝑥 } ) ) ) ) | 
						
							| 14 | 13 | simp3d | ⊢ ( 𝐵  ∈  𝐽  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  ( 𝐾  ∖  {  0  } ) ¬  ( 𝑦  ·  𝑥 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝑥 } ) ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑥  =  𝐸  →  ( 𝑦  ·  𝑥 )  =  ( 𝑦  ·  𝐸 ) ) | 
						
							| 16 |  | sneq | ⊢ ( 𝑥  =  𝐸  →  { 𝑥 }  =  { 𝐸 } ) | 
						
							| 17 | 16 | difeq2d | ⊢ ( 𝑥  =  𝐸  →  ( 𝐵  ∖  { 𝑥 } )  =  ( 𝐵  ∖  { 𝐸 } ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝑥  =  𝐸  →  ( 𝑁 ‘ ( 𝐵  ∖  { 𝑥 } ) )  =  ( 𝑁 ‘ ( 𝐵  ∖  { 𝐸 } ) ) ) | 
						
							| 19 | 15 18 | eleq12d | ⊢ ( 𝑥  =  𝐸  →  ( ( 𝑦  ·  𝑥 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝑥 } ) )  ↔  ( 𝑦  ·  𝐸 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝐸 } ) ) ) ) | 
						
							| 20 | 19 | notbid | ⊢ ( 𝑥  =  𝐸  →  ( ¬  ( 𝑦  ·  𝑥 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝑥 } ) )  ↔  ¬  ( 𝑦  ·  𝐸 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝐸 } ) ) ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ·  𝐸 )  =  ( 𝐴  ·  𝐸 ) ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦  ·  𝐸 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝐸 } ) )  ↔  ( 𝐴  ·  𝐸 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝐸 } ) ) ) ) | 
						
							| 23 | 22 | notbid | ⊢ ( 𝑦  =  𝐴  →  ( ¬  ( 𝑦  ·  𝐸 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝐸 } ) )  ↔  ¬  ( 𝐴  ·  𝐸 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝐸 } ) ) ) ) | 
						
							| 24 | 20 23 | rspc2v | ⊢ ( ( 𝐸  ∈  𝐵  ∧  𝐴  ∈  ( 𝐾  ∖  {  0  } ) )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  ( 𝐾  ∖  {  0  } ) ¬  ( 𝑦  ·  𝑥 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝑥 } ) )  →  ¬  ( 𝐴  ·  𝐸 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝐸 } ) ) ) ) | 
						
							| 25 | 14 24 | syl5com | ⊢ ( 𝐵  ∈  𝐽  →  ( ( 𝐸  ∈  𝐵  ∧  𝐴  ∈  ( 𝐾  ∖  {  0  } ) )  →  ¬  ( 𝐴  ·  𝐸 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝐸 } ) ) ) ) | 
						
							| 26 | 25 | impl | ⊢ ( ( ( 𝐵  ∈  𝐽  ∧  𝐸  ∈  𝐵 )  ∧  𝐴  ∈  ( 𝐾  ∖  {  0  } ) )  →  ¬  ( 𝐴  ·  𝐸 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝐸 } ) ) ) | 
						
							| 27 | 8 26 | sylan2br | ⊢ ( ( ( 𝐵  ∈  𝐽  ∧  𝐸  ∈  𝐵 )  ∧  ( 𝐴  ∈  𝐾  ∧  𝐴  ≠   0  ) )  →  ¬  ( 𝐴  ·  𝐸 )  ∈  ( 𝑁 ‘ ( 𝐵  ∖  { 𝐸 } ) ) ) |