Metamath Proof Explorer


Theorem lbsind2

Description: A basis is linearly independent; that is, every element is not in the span of the remainder of the basis. (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 12-Jan-2015)

Ref Expression
Hypotheses lbsind2.j 𝐽 = ( LBasis ‘ 𝑊 )
lbsind2.n 𝑁 = ( LSpan ‘ 𝑊 )
lbsind2.f 𝐹 = ( Scalar ‘ 𝑊 )
lbsind2.o 1 = ( 1r𝐹 )
lbsind2.z 0 = ( 0g𝐹 )
Assertion lbsind2 ( ( ( 𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐸𝐵 ) → ¬ 𝐸 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) )

Proof

Step Hyp Ref Expression
1 lbsind2.j 𝐽 = ( LBasis ‘ 𝑊 )
2 lbsind2.n 𝑁 = ( LSpan ‘ 𝑊 )
3 lbsind2.f 𝐹 = ( Scalar ‘ 𝑊 )
4 lbsind2.o 1 = ( 1r𝐹 )
5 lbsind2.z 0 = ( 0g𝐹 )
6 simp1l ( ( ( 𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐸𝐵 ) → 𝑊 ∈ LMod )
7 simp2 ( ( ( 𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐸𝐵 ) → 𝐵𝐽 )
8 simp3 ( ( ( 𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐸𝐵 ) → 𝐸𝐵 )
9 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
10 9 1 lbsel ( ( 𝐵𝐽𝐸𝐵 ) → 𝐸 ∈ ( Base ‘ 𝑊 ) )
11 7 8 10 syl2anc ( ( ( 𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐸𝐵 ) → 𝐸 ∈ ( Base ‘ 𝑊 ) )
12 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
13 9 3 12 4 lmodvs1 ( ( 𝑊 ∈ LMod ∧ 𝐸 ∈ ( Base ‘ 𝑊 ) ) → ( 1 ( ·𝑠𝑊 ) 𝐸 ) = 𝐸 )
14 6 11 13 syl2anc ( ( ( 𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐸𝐵 ) → ( 1 ( ·𝑠𝑊 ) 𝐸 ) = 𝐸 )
15 3 lmodring ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )
16 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
17 16 4 ringidcl ( 𝐹 ∈ Ring → 1 ∈ ( Base ‘ 𝐹 ) )
18 6 15 17 3syl ( ( ( 𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐸𝐵 ) → 1 ∈ ( Base ‘ 𝐹 ) )
19 simp1r ( ( ( 𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐸𝐵 ) → 10 )
20 9 1 2 3 12 16 5 lbsind ( ( ( 𝐵𝐽𝐸𝐵 ) ∧ ( 1 ∈ ( Base ‘ 𝐹 ) ∧ 10 ) ) → ¬ ( 1 ( ·𝑠𝑊 ) 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) )
21 7 8 18 19 20 syl22anc ( ( ( 𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐸𝐵 ) → ¬ ( 1 ( ·𝑠𝑊 ) 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) )
22 14 21 eqneltrrd ( ( ( 𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐸𝐵 ) → ¬ 𝐸 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) )