Step |
Hyp |
Ref |
Expression |
1 |
|
lbsind2.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
2 |
|
lbsind2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lbsind2.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
lbsind2.o |
⊢ 1 = ( 1r ‘ 𝐹 ) |
5 |
|
lbsind2.z |
⊢ 0 = ( 0g ‘ 𝐹 ) |
6 |
|
simp1l |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝑊 ∈ LMod ) |
7 |
|
simp2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝐵 ∈ 𝐽 ) |
8 |
|
simp3 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝐸 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
10 |
9 1
|
lbsel |
⊢ ( ( 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝐸 ∈ ( Base ‘ 𝑊 ) ) |
11 |
7 8 10
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝐸 ∈ ( Base ‘ 𝑊 ) ) |
12 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
13 |
9 3 12 4
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐸 ∈ ( Base ‘ 𝑊 ) ) → ( 1 ( ·𝑠 ‘ 𝑊 ) 𝐸 ) = 𝐸 ) |
14 |
6 11 13
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → ( 1 ( ·𝑠 ‘ 𝑊 ) 𝐸 ) = 𝐸 ) |
15 |
3
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
17 |
16 4
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → 1 ∈ ( Base ‘ 𝐹 ) ) |
18 |
6 15 17
|
3syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 1 ∈ ( Base ‘ 𝐹 ) ) |
19 |
|
simp1r |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 1 ≠ 0 ) |
20 |
9 1 2 3 12 16 5
|
lbsind |
⊢ ( ( ( 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) ∧ ( 1 ∈ ( Base ‘ 𝐹 ) ∧ 1 ≠ 0 ) ) → ¬ ( 1 ( ·𝑠 ‘ 𝑊 ) 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |
21 |
7 8 18 19 20
|
syl22anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → ¬ ( 1 ( ·𝑠 ‘ 𝑊 ) 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |
22 |
14 21
|
eqneltrrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → ¬ 𝐸 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |