Step |
Hyp |
Ref |
Expression |
1 |
|
lbslsat.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lbslsat.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lbslsat.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
lbslsat.y |
⊢ 𝑌 = ( 𝑊 ↾s ( 𝑁 ‘ { 𝑋 } ) ) |
5 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
6 |
|
snssi |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑋 } ⊆ 𝑉 ) |
7 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
8 |
1 7 2
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
9 |
5 6 8
|
syl2an |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
10 |
4 7
|
lsslvec |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → 𝑌 ∈ LVec ) |
11 |
9 10
|
syldan |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → 𝑌 ∈ LVec ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑌 ∈ LVec ) |
13 |
1 2
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → { 𝑋 } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
14 |
5 6 13
|
syl2an |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → { 𝑋 } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
15 |
1 2
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 ) |
16 |
5 6 15
|
syl2an |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 ) |
17 |
4 1
|
ressbas2 |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 → ( 𝑁 ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ) |
19 |
14 18
|
sseqtrd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → { 𝑋 } ⊆ ( Base ‘ 𝑌 ) ) |
20 |
19
|
3adant3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → { 𝑋 } ⊆ ( Base ‘ 𝑌 ) ) |
21 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
22 |
|
eqid |
⊢ ( LSpan ‘ 𝑌 ) = ( LSpan ‘ 𝑌 ) |
23 |
4 2 22 7
|
lsslsp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ { 𝑋 } ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( ( LSpan ‘ 𝑌 ) ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
24 |
21 9 14 23
|
syl3anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑌 ) ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
25 |
24
|
3adant3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ( LSpan ‘ 𝑌 ) ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
26 |
18
|
3adant3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ) |
27 |
25 26
|
eqtrd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ( LSpan ‘ 𝑌 ) ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ) |
28 |
|
difid |
⊢ ( { 𝑋 } ∖ { 𝑋 } ) = ∅ |
29 |
28
|
fveq2i |
⊢ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) = ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) |
30 |
29
|
a1i |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) = ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) ) |
31 |
30
|
eleq2d |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ↔ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) ) ) |
32 |
31
|
biimpa |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) ) |
33 |
|
lveclmod |
⊢ ( 𝑌 ∈ LVec → 𝑌 ∈ LMod ) |
34 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
35 |
34 22
|
lsp0 |
⊢ ( 𝑌 ∈ LMod → ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) = { ( 0g ‘ 𝑌 ) } ) |
36 |
11 33 35
|
3syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) = { ( 0g ‘ 𝑌 ) } ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → ( ( LSpan ‘ 𝑌 ) ‘ ∅ ) = { ( 0g ‘ 𝑌 ) } ) |
38 |
32 37
|
eleqtrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → 𝑋 ∈ { ( 0g ‘ 𝑌 ) } ) |
39 |
|
elsni |
⊢ ( 𝑋 ∈ { ( 0g ‘ 𝑌 ) } → 𝑋 = ( 0g ‘ 𝑌 ) ) |
40 |
38 39
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → 𝑋 = ( 0g ‘ 𝑌 ) ) |
41 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
42 |
|
grpmnd |
⊢ ( 𝑊 ∈ Grp → 𝑊 ∈ Mnd ) |
43 |
21 41 42
|
3syl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ Mnd ) |
44 |
3 1 2
|
0ellsp |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → 0 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
45 |
5 6 44
|
syl2an |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → 0 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
46 |
4 1 3
|
ress0g |
⊢ ( ( 𝑊 ∈ Mnd ∧ 0 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 ) → 0 = ( 0g ‘ 𝑌 ) ) |
47 |
43 45 16 46
|
syl3anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → 0 = ( 0g ‘ 𝑌 ) ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → 0 = ( 0g ‘ 𝑌 ) ) |
49 |
40 48
|
eqtr4d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) → 𝑋 = 0 ) |
50 |
49
|
ex |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) → 𝑋 = 0 ) ) |
51 |
50
|
necon3ad |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ≠ 0 → ¬ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
52 |
51
|
3impia |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ¬ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) |
53 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
54 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
55 |
54
|
difeq2d |
⊢ ( 𝑥 = 𝑋 → ( { 𝑋 } ∖ { 𝑥 } ) = ( { 𝑋 } ∖ { 𝑋 } ) ) |
56 |
55
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) = ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) |
57 |
53 56
|
eleq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
58 |
57
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ ¬ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
59 |
58
|
ralsng |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝑋 } ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ ¬ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
60 |
59
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ∀ 𝑥 ∈ { 𝑋 } ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ↔ ¬ 𝑋 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑋 } ) ) ) ) |
61 |
52 60
|
mpbird |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ∀ 𝑥 ∈ { 𝑋 } ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ) |
62 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
63 |
|
eqid |
⊢ ( LBasis ‘ 𝑌 ) = ( LBasis ‘ 𝑌 ) |
64 |
62 63 22
|
islbs2 |
⊢ ( 𝑌 ∈ LVec → ( { 𝑋 } ∈ ( LBasis ‘ 𝑌 ) ↔ ( { 𝑋 } ⊆ ( Base ‘ 𝑌 ) ∧ ( ( LSpan ‘ 𝑌 ) ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ { 𝑋 } ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ) ) ) |
65 |
64
|
biimpar |
⊢ ( ( 𝑌 ∈ LVec ∧ ( { 𝑋 } ⊆ ( Base ‘ 𝑌 ) ∧ ( ( LSpan ‘ 𝑌 ) ‘ { 𝑋 } ) = ( Base ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ { 𝑋 } ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑌 ) ‘ ( { 𝑋 } ∖ { 𝑥 } ) ) ) ) → { 𝑋 } ∈ ( LBasis ‘ 𝑌 ) ) |
66 |
12 20 27 61 65
|
syl13anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → { 𝑋 } ∈ ( LBasis ‘ 𝑌 ) ) |