Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ⊆ ℝ |
2 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 |
3 |
|
btwnz |
⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ∈ ℤ 𝑧 < 𝑥 ∧ ∃ 𝑧 ∈ ℤ 𝑥 < 𝑧 ) ) |
4 |
3
|
simpld |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℤ 𝑧 < 𝑥 ) |
5 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
6 |
|
zre |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) |
7 |
|
ltleletr |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 < 𝑥 ∧ 𝑥 ≤ 𝑦 ) → 𝑧 ≤ 𝑦 ) ) |
8 |
6 7
|
syl3an1 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 < 𝑥 ∧ 𝑥 ≤ 𝑦 ) → 𝑧 ≤ 𝑦 ) ) |
9 |
8
|
expd |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 < 𝑥 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
10 |
9
|
3expia |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 ∈ ℝ → ( 𝑧 < 𝑥 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) |
11 |
5 10
|
syl5 |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 < 𝑥 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) |
12 |
11
|
expdimp |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑦 ∈ 𝐴 → ( 𝑧 < 𝑥 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) |
13 |
12
|
com23 |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑧 < 𝑥 → ( 𝑦 ∈ 𝐴 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) ) |
14 |
13
|
imp |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ( 𝑦 ∈ 𝐴 → ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) ) |
15 |
14
|
ralrimiv |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) ) |
16 |
|
ralim |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → 𝑧 ≤ 𝑦 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
18 |
17
|
ex |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑧 < 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) |
19 |
18
|
anasss |
⊢ ( ( 𝑧 ∈ ℤ ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ) → ( 𝑧 < 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) |
20 |
19
|
expcom |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝑧 ∈ ℤ → ( 𝑧 < 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) ) |
21 |
20
|
com23 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝑧 < 𝑥 → ( 𝑧 ∈ ℤ → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) ) |
22 |
21
|
imp |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ( 𝑧 ∈ ℤ → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) |
23 |
22
|
imdistand |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ( ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) ) |
24 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦 ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
26 |
25
|
rspcev |
⊢ ( ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
27 |
23 26
|
syl6 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑧 < 𝑥 ) → ( ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
28 |
27
|
ex |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝑧 < 𝑥 → ( ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
29 |
28
|
com23 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑧 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
30 |
29
|
ancomsd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝑧 ∈ ℤ ) → ( 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
31 |
30
|
expdimp |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑧 ∈ ℤ → ( 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
32 |
31
|
rexlimdv |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( ∃ 𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
33 |
32
|
anasss |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → ( ∃ 𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
34 |
33
|
expcom |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ∈ ℤ 𝑧 < 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
35 |
4 34
|
mpdi |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑥 ∈ ℝ → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
36 |
35
|
ex |
⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ( 𝑥 ∈ ℝ → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
37 |
36
|
com23 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) ) |
38 |
1 2 37
|
rexlimd |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
39 |
|
zssre |
⊢ ℤ ⊆ ℝ |
40 |
|
ssrexv |
⊢ ( ℤ ⊆ ℝ → ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
41 |
39 40
|
ax-mp |
⊢ ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
42 |
38 41
|
impbid1 |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |