| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lclkrlem2m.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 2 |
|
lclkrlem2m.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
| 3 |
|
lclkrlem2m.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
lclkrlem2m.q |
⊢ × = ( .r ‘ 𝑆 ) |
| 5 |
|
lclkrlem2m.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 6 |
|
lclkrlem2m.i |
⊢ 𝐼 = ( invr ‘ 𝑆 ) |
| 7 |
|
lclkrlem2m.m |
⊢ − = ( -g ‘ 𝑈 ) |
| 8 |
|
lclkrlem2m.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 9 |
|
lclkrlem2m.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
| 10 |
|
lclkrlem2m.p |
⊢ + = ( +g ‘ 𝐷 ) |
| 11 |
|
lclkrlem2m.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 12 |
|
lclkrlem2m.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 13 |
|
lclkrlem2m.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
| 14 |
|
lclkrlem2m.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 15 |
|
lclkrlem2n.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 16 |
|
lclkrlem2n.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 17 |
|
lclkrlem2o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 18 |
|
lclkrlem2o.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 19 |
|
lclkrlem2o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 20 |
|
lclkrlem2o.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 21 |
|
lclkrlem2o.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 22 |
|
lclkrlem2q.le |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐸 ) = ( ⊥ ‘ { 𝑋 } ) ) |
| 23 |
|
lclkrlem2q.lg |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 24 |
|
lclkrlem2q.b |
⊢ 𝐵 = ( 𝑋 − ( ( ( ( 𝐸 + 𝐺 ) ‘ 𝑋 ) × ( 𝐼 ‘ ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ) ) · 𝑌 ) ) |
| 25 |
|
lclkrlem2q.n |
⊢ ( 𝜑 → ( ( 𝐸 + 𝐺 ) ‘ 𝑌 ) ≠ 0 ) |
| 26 |
|
lclkrlem2r.bn |
⊢ ( 𝜑 → 𝐵 = ( 0g ‘ 𝑈 ) ) |
| 27 |
12
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
| 28 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 29 |
17 28 19 1 18
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑌 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 30 |
21 27 29
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 31 |
17 28 18
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ { 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑌 } ) ) ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 32 |
21 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑌 } ) ) ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 33 |
32
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑌 } ) ) ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
lclkrlem2r |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 35 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 36 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
| 37 |
17 19 21
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → 𝑈 ∈ LVec ) |
| 39 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) |
| 40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) |
| 41 |
36 38 39 40
|
lshpcmp |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ↔ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) |
| 42 |
35 41
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 43 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐺 ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 44 |
42 43
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = ( ⊥ ‘ { 𝑌 } ) ) |
| 45 |
44
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ { 𝑌 } ) ) ) |
| 46 |
45
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ { 𝑌 } ) ) ) ) |
| 47 |
33 46 44
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 48 |
17 19 18 1 21
|
dochoc1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) = 𝑉 ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) = 𝑉 ) |
| 50 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) |
| 51 |
50
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) = ( ⊥ ‘ 𝑉 ) ) |
| 52 |
51
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) ) |
| 53 |
49 52 50
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) ∧ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 54 |
17 19 21
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 55 |
8 9 10 54 13 14
|
ldualvaddcl |
⊢ ( 𝜑 → ( 𝐸 + 𝐺 ) ∈ 𝐹 ) |
| 56 |
1 36 8 16 37 55
|
lkrshpor |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ∨ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ∈ ( LSHyp ‘ 𝑈 ) ∨ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) ) |
| 58 |
47 53 57
|
mpjaodan |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 59 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) = 𝑉 ) |
| 60 |
1 8 16 54 55
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ⊆ 𝑉 ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ⊆ 𝑉 ) |
| 62 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 𝐿 ‘ 𝐺 ) = 𝑉 ) |
| 63 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 64 |
62 63
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → 𝑉 ⊆ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 65 |
61 64
|
eqssd |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) = 𝑉 ) |
| 66 |
65
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) = ( ⊥ ‘ 𝑉 ) ) |
| 67 |
66
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑉 ) ) ) |
| 68 |
59 67 65
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |
| 69 |
1 36 8 16 37 14
|
lkrshpor |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑈 ) ∨ ( 𝐿 ‘ 𝐺 ) = 𝑉 ) ) |
| 70 |
58 68 69
|
mpjaodan |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) ) = ( 𝐿 ‘ ( 𝐸 + 𝐺 ) ) ) |