| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcd1 | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  gcd  1 )  =  1 ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  lcm  1 )  ·  ( 𝑀  gcd  1 ) )  =  ( ( 𝑀  lcm  1 )  ·  1 ) ) | 
						
							| 3 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 4 |  | lcmcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( 𝑀  lcm  1 )  ∈  ℕ0 ) | 
						
							| 5 | 3 4 | mpan2 | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  lcm  1 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | nn0cnd | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  lcm  1 )  ∈  ℂ ) | 
						
							| 7 | 6 | mulridd | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  lcm  1 )  ·  1 )  =  ( 𝑀  lcm  1 ) ) | 
						
							| 8 | 2 7 | eqtr2d | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  lcm  1 )  =  ( ( 𝑀  lcm  1 )  ·  ( 𝑀  gcd  1 ) ) ) | 
						
							| 9 |  | lcmgcd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( ( 𝑀  lcm  1 )  ·  ( 𝑀  gcd  1 ) )  =  ( abs ‘ ( 𝑀  ·  1 ) ) ) | 
						
							| 10 | 3 9 | mpan2 | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  lcm  1 )  ·  ( 𝑀  gcd  1 ) )  =  ( abs ‘ ( 𝑀  ·  1 ) ) ) | 
						
							| 11 |  | zcn | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℂ ) | 
						
							| 12 | 11 | mulridd | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  ·  1 )  =  𝑀 ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝑀  ∈  ℤ  →  ( abs ‘ ( 𝑀  ·  1 ) )  =  ( abs ‘ 𝑀 ) ) | 
						
							| 14 | 8 10 13 | 3eqtrd | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  lcm  1 )  =  ( abs ‘ 𝑀 ) ) |