| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcmcom | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑁  lcm  𝑀 ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  =  0 )  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑁  lcm  𝑀 ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑀  =  0  →  ( 𝑁  lcm  𝑀 )  =  ( 𝑁  lcm  0 ) ) | 
						
							| 4 |  | lcm0val | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  lcm  0 )  =  0 ) | 
						
							| 5 | 3 4 | sylan9eqr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  =  0 )  →  ( 𝑁  lcm  𝑀 )  =  0 ) | 
						
							| 6 | 5 | adantll | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  =  0 )  →  ( 𝑁  lcm  𝑀 )  =  0 ) | 
						
							| 7 | 2 6 | eqtrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑀  =  0 )  →  ( 𝑀  lcm  𝑁 )  =  0 ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 𝑀  lcm  𝑁 )  =  ( 𝑀  lcm  0 ) ) | 
						
							| 9 |  | lcm0val | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  lcm  0 )  =  0 ) | 
						
							| 10 | 8 9 | sylan9eqr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  =  0 )  →  ( 𝑀  lcm  𝑁 )  =  0 ) | 
						
							| 11 | 10 | adantlr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑁  =  0 )  →  ( 𝑀  lcm  𝑁 )  =  0 ) | 
						
							| 12 | 7 11 | jaodan | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  =  0 ) | 
						
							| 13 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 14 | 12 13 | eqeltrdi | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ0 ) | 
						
							| 15 |  | lcmn0cl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ ) | 
						
							| 16 | 15 | nnnn0d | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ0 ) | 
						
							| 17 | 14 16 | pm2.61dan | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  lcm  𝑁 )  ∈  ℕ0 ) |