Step |
Hyp |
Ref |
Expression |
1 |
|
lcmn0val |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) |
2 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ℕ |
3 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
4 |
2 3
|
sseqtri |
⊢ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ( ℤ≥ ‘ 1 ) |
5 |
|
zmulcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
7 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
8 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
9 |
7 8
|
anim12i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
10 |
|
ioran |
⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ( ¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0 ) ) |
11 |
|
df-ne |
⊢ ( 𝑀 ≠ 0 ↔ ¬ 𝑀 = 0 ) |
12 |
|
df-ne |
⊢ ( 𝑁 ≠ 0 ↔ ¬ 𝑁 = 0 ) |
13 |
11 12
|
anbi12i |
⊢ ( ( 𝑀 ≠ 0 ∧ 𝑁 ≠ 0 ) ↔ ( ¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0 ) ) |
14 |
10 13
|
sylbb2 |
⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) → ( 𝑀 ≠ 0 ∧ 𝑁 ≠ 0 ) ) |
15 |
|
mulne0 |
⊢ ( ( ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ∧ ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) → ( 𝑀 · 𝑁 ) ≠ 0 ) |
16 |
15
|
an4s |
⊢ ( ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ∧ ( 𝑀 ≠ 0 ∧ 𝑁 ≠ 0 ) ) → ( 𝑀 · 𝑁 ) ≠ 0 ) |
17 |
9 14 16
|
syl2an |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 · 𝑁 ) ≠ 0 ) |
18 |
|
nnabscl |
⊢ ( ( ( 𝑀 · 𝑁 ) ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ≠ 0 ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ℕ ) |
19 |
6 17 18
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ℕ ) |
20 |
|
dvdsmul1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( 𝑀 · 𝑁 ) ) |
21 |
|
dvdsabsb |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
22 |
5 21
|
syldan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
23 |
20 22
|
mpbid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
24 |
|
dvdsmul2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( 𝑀 · 𝑁 ) ) |
25 |
|
dvdsabsb |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
26 |
5 25
|
sylan2 |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
27 |
26
|
anabss7 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
28 |
24 27
|
mpbid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
29 |
23 28
|
jca |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ∧ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ∧ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
31 |
|
breq2 |
⊢ ( 𝑛 = ( abs ‘ ( 𝑀 · 𝑁 ) ) → ( 𝑀 ∥ 𝑛 ↔ 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
32 |
|
breq2 |
⊢ ( 𝑛 = ( abs ‘ ( 𝑀 · 𝑁 ) ) → ( 𝑁 ∥ 𝑛 ↔ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
33 |
31 32
|
anbi12d |
⊢ ( 𝑛 = ( abs ‘ ( 𝑀 · 𝑁 ) ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ↔ ( 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ∧ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ) |
34 |
33
|
rspcev |
⊢ ( ( ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ℕ ∧ ( 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ∧ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) |
35 |
19 30 34
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ∃ 𝑛 ∈ ℕ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) |
36 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) |
37 |
35 36
|
sylibr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ≠ ∅ ) |
38 |
|
infssuzcl |
⊢ ( ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ≠ ∅ ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) |
39 |
4 37 38
|
sylancr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) |
40 |
1 39
|
eqeltrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) |