| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcmn0val | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  =  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  ) ) | 
						
							| 2 |  | ssrab2 | ⊢ { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ⊆  ℕ | 
						
							| 3 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 4 | 2 3 | sseqtri | ⊢ { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 5 |  | zmulcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ·  𝑁 )  ∈  ℤ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  ·  𝑁 )  ∈  ℤ ) | 
						
							| 7 |  | zcn | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℂ ) | 
						
							| 8 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 9 | 7 8 | anim12i | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ ) ) | 
						
							| 10 |  | ioran | ⊢ ( ¬  ( 𝑀  =  0  ∨  𝑁  =  0 )  ↔  ( ¬  𝑀  =  0  ∧  ¬  𝑁  =  0 ) ) | 
						
							| 11 |  | df-ne | ⊢ ( 𝑀  ≠  0  ↔  ¬  𝑀  =  0 ) | 
						
							| 12 |  | df-ne | ⊢ ( 𝑁  ≠  0  ↔  ¬  𝑁  =  0 ) | 
						
							| 13 | 11 12 | anbi12i | ⊢ ( ( 𝑀  ≠  0  ∧  𝑁  ≠  0 )  ↔  ( ¬  𝑀  =  0  ∧  ¬  𝑁  =  0 ) ) | 
						
							| 14 | 10 13 | sylbb2 | ⊢ ( ¬  ( 𝑀  =  0  ∨  𝑁  =  0 )  →  ( 𝑀  ≠  0  ∧  𝑁  ≠  0 ) ) | 
						
							| 15 |  | mulne0 | ⊢ ( ( ( 𝑀  ∈  ℂ  ∧  𝑀  ≠  0 )  ∧  ( 𝑁  ∈  ℂ  ∧  𝑁  ≠  0 ) )  →  ( 𝑀  ·  𝑁 )  ≠  0 ) | 
						
							| 16 | 15 | an4s | ⊢ ( ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ )  ∧  ( 𝑀  ≠  0  ∧  𝑁  ≠  0 ) )  →  ( 𝑀  ·  𝑁 )  ≠  0 ) | 
						
							| 17 | 9 14 16 | syl2an | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  ·  𝑁 )  ≠  0 ) | 
						
							| 18 |  | nnabscl | ⊢ ( ( ( 𝑀  ·  𝑁 )  ∈  ℤ  ∧  ( 𝑀  ·  𝑁 )  ≠  0 )  →  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∈  ℕ ) | 
						
							| 19 | 6 17 18 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∈  ℕ ) | 
						
							| 20 |  | dvdsmul1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑀  ∥  ( 𝑀  ·  𝑁 ) ) | 
						
							| 21 |  | dvdsabsb | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑀  ·  𝑁 )  ∈  ℤ )  →  ( 𝑀  ∥  ( 𝑀  ·  𝑁 )  ↔  𝑀  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 22 | 5 21 | syldan | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  ( 𝑀  ·  𝑁 )  ↔  𝑀  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 23 | 20 22 | mpbid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑀  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 24 |  | dvdsmul2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑁  ∥  ( 𝑀  ·  𝑁 ) ) | 
						
							| 25 |  | dvdsabsb | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑀  ·  𝑁 )  ∈  ℤ )  →  ( 𝑁  ∥  ( 𝑀  ·  𝑁 )  ↔  𝑁  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 26 | 5 25 | sylan2 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑁  ∥  ( 𝑀  ·  𝑁 )  ↔  𝑁  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 27 | 26 | anabss7 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ∥  ( 𝑀  ·  𝑁 )  ↔  𝑁  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 28 | 24 27 | mpbid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑁  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 29 | 23 28 | jca | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∧  𝑁  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∧  𝑁  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 31 |  | breq2 | ⊢ ( 𝑛  =  ( abs ‘ ( 𝑀  ·  𝑁 ) )  →  ( 𝑀  ∥  𝑛  ↔  𝑀  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 32 |  | breq2 | ⊢ ( 𝑛  =  ( abs ‘ ( 𝑀  ·  𝑁 ) )  →  ( 𝑁  ∥  𝑛  ↔  𝑁  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 33 | 31 32 | anbi12d | ⊢ ( 𝑛  =  ( abs ‘ ( 𝑀  ·  𝑁 ) )  →  ( ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 )  ↔  ( 𝑀  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∧  𝑁  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) ) ) | 
						
							| 34 | 33 | rspcev | ⊢ ( ( ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∈  ℕ  ∧  ( 𝑀  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) )  ∧  𝑁  ∥  ( abs ‘ ( 𝑀  ·  𝑁 ) ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) | 
						
							| 35 | 19 30 34 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ∃ 𝑛  ∈  ℕ ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) | 
						
							| 36 |  | rabn0 | ⊢ ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ≠  ∅  ↔  ∃ 𝑛  ∈  ℕ ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) ) | 
						
							| 37 | 35 36 | sylibr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ≠  ∅ ) | 
						
							| 38 |  | infssuzcl | ⊢ ( ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ⊆  ( ℤ≥ ‘ 1 )  ∧  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) }  ≠  ∅ )  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  )  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ) | 
						
							| 39 | 4 37 38 | sylancr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  inf ( { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ,  ℝ ,   <  )  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ) | 
						
							| 40 | 1 39 | eqeltrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑀  =  0  ∨  𝑁  =  0 ) )  →  ( 𝑀  lcm  𝑁 )  ∈  { 𝑛  ∈  ℕ  ∣  ( 𝑀  ∥  𝑛  ∧  𝑁  ∥  𝑛 ) } ) |