| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orcom |
⊢ ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ( 𝑁 = 0 ∨ 𝑀 = 0 ) ) |
| 2 |
|
ancom |
⊢ ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ↔ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) ) |
| 3 |
2
|
rabbii |
⊢ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } = { 𝑛 ∈ ℕ ∣ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) } |
| 4 |
3
|
infeq1i |
⊢ inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) } , ℝ , < ) |
| 5 |
1 4
|
ifbieq2i |
⊢ if ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) = if ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) } , ℝ , < ) ) |
| 6 |
|
lcmval |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = if ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) ) |
| 7 |
|
lcmval |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 lcm 𝑀 ) = if ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) } , ℝ , < ) ) ) |
| 8 |
7
|
ancoms |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 lcm 𝑀 ) = if ( ( 𝑁 = 0 ∨ 𝑀 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑁 ∥ 𝑛 ∧ 𝑀 ∥ 𝑛 ) } , ℝ , < ) ) ) |
| 9 |
5 6 8
|
3eqtr4a |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = ( 𝑁 lcm 𝑀 ) ) |