Metamath Proof Explorer


Theorem lcmf0

Description: The least common multiple of the empty set is 1. (Contributed by AV, 22-Aug-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmf0 ( lcm ‘ ∅ ) = 1

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ ℤ
2 0fin ∅ ∈ Fin
3 noel ¬ 0 ∈ ∅
4 3 nelir 0 ∉ ∅
5 lcmfn0val ( ( ∅ ⊆ ℤ ∧ ∅ ∈ Fin ∧ 0 ∉ ∅ ) → ( lcm ‘ ∅ ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚𝑛 } , ℝ , < ) )
6 1 2 4 5 mp3an ( lcm ‘ ∅ ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚𝑛 } , ℝ , < )
7 ral0 𝑚 ∈ ∅ 𝑚𝑛
8 7 rgenw 𝑛 ∈ ℕ ∀ 𝑚 ∈ ∅ 𝑚𝑛
9 rabid2 ( ℕ = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚𝑛 } ↔ ∀ 𝑛 ∈ ℕ ∀ 𝑚 ∈ ∅ 𝑚𝑛 )
10 8 9 mpbir ℕ = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚𝑛 }
11 10 eqcomi { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚𝑛 } = ℕ
12 11 infeq1i inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚𝑛 } , ℝ , < ) = inf ( ℕ , ℝ , < )
13 nninf inf ( ℕ , ℝ , < ) = 1
14 6 12 13 3eqtri ( lcm ‘ ∅ ) = 1