| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ss |
⊢ ∅ ⊆ ℤ |
| 2 |
|
0fi |
⊢ ∅ ∈ Fin |
| 3 |
|
noel |
⊢ ¬ 0 ∈ ∅ |
| 4 |
3
|
nelir |
⊢ 0 ∉ ∅ |
| 5 |
|
lcmfn0val |
⊢ ( ( ∅ ⊆ ℤ ∧ ∅ ∈ Fin ∧ 0 ∉ ∅ ) → ( lcm ‘ ∅ ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } , ℝ , < ) ) |
| 6 |
1 2 4 5
|
mp3an |
⊢ ( lcm ‘ ∅ ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } , ℝ , < ) |
| 7 |
|
ral0 |
⊢ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 |
| 8 |
7
|
rgenw |
⊢ ∀ 𝑛 ∈ ℕ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 |
| 9 |
|
rabid2 |
⊢ ( ℕ = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } ↔ ∀ 𝑛 ∈ ℕ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 ) |
| 10 |
8 9
|
mpbir |
⊢ ℕ = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } |
| 11 |
10
|
eqcomi |
⊢ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } = ℕ |
| 12 |
11
|
infeq1i |
⊢ inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑛 } , ℝ , < ) = inf ( ℕ , ℝ , < ) |
| 13 |
|
nninf |
⊢ inf ( ℕ , ℝ , < ) = 1 |
| 14 |
6 12 13
|
3eqtri |
⊢ ( lcm ‘ ∅ ) = 1 |