| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-lcmf |
⊢ lcm = ( 𝑧 ∈ 𝒫 ℤ ↦ if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |
| 2 |
|
eleq2 |
⊢ ( 𝑧 = 𝑍 → ( 0 ∈ 𝑧 ↔ 0 ∈ 𝑍 ) ) |
| 3 |
|
raleq |
⊢ ( 𝑧 = 𝑍 → ( ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ) ) |
| 4 |
3
|
rabbidv |
⊢ ( 𝑧 = 𝑍 → { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ) |
| 5 |
4
|
infeq1d |
⊢ ( 𝑧 = 𝑍 → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) |
| 6 |
2 5
|
ifbieq2d |
⊢ ( 𝑧 = 𝑍 → if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) = if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |
| 7 |
|
iftrue |
⊢ ( 0 ∈ 𝑍 → if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) = 0 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) = 0 ) |
| 9 |
6 8
|
sylan9eqr |
⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) ∧ 𝑧 = 𝑍 ) → if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) = 0 ) |
| 10 |
|
zex |
⊢ ℤ ∈ V |
| 11 |
10
|
ssex |
⊢ ( 𝑍 ⊆ ℤ → 𝑍 ∈ V ) |
| 12 |
|
elpwg |
⊢ ( 𝑍 ∈ V → ( 𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ ) ) |
| 13 |
11 12
|
syl |
⊢ ( 𝑍 ⊆ ℤ → ( 𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ ) ) |
| 14 |
13
|
ibir |
⊢ ( 𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → 𝑍 ∈ 𝒫 ℤ ) |
| 16 |
|
simpr |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → 0 ∈ 𝑍 ) |
| 17 |
1 9 15 16
|
fvmptd2 |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) = 0 ) |