| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
⊢ 2 ∈ ℤ |
| 2 |
|
3z |
⊢ 3 ∈ ℤ |
| 3 |
|
4z |
⊢ 4 ∈ ℤ |
| 4 |
|
lcmftp |
⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( lcm ‘ { 2 , 3 , 4 } ) = ( ( 2 lcm 3 ) lcm 4 ) ) |
| 5 |
|
lcmcom |
⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ) → ( 2 lcm 3 ) = ( 3 lcm 2 ) ) |
| 6 |
5
|
3adant3 |
⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 2 lcm 3 ) = ( 3 lcm 2 ) ) |
| 7 |
|
3lcm2e6woprm |
⊢ ( 3 lcm 2 ) = 6 |
| 8 |
6 7
|
eqtrdi |
⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 2 lcm 3 ) = 6 ) |
| 9 |
8
|
oveq1d |
⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( ( 2 lcm 3 ) lcm 4 ) = ( 6 lcm 4 ) ) |
| 10 |
|
6lcm4e12 |
⊢ ( 6 lcm 4 ) = ; 1 2 |
| 11 |
9 10
|
eqtrdi |
⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( ( 2 lcm 3 ) lcm 4 ) = ; 1 2 ) |
| 12 |
4 11
|
eqtrd |
⊢ ( ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 4 ∈ ℤ ) → ( lcm ‘ { 2 , 3 , 4 } ) = ; 1 2 ) |
| 13 |
1 2 3 12
|
mp3an |
⊢ ( lcm ‘ { 2 , 3 , 4 } ) = ; 1 2 |