Step |
Hyp |
Ref |
Expression |
1 |
|
lcmf0val |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) = 0 ) |
2 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
3 |
1 2
|
eqeltrdi |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ0 ) |
4 |
3
|
adantlr |
⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ0 ) |
5 |
|
df-nel |
⊢ ( 0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍 ) |
6 |
|
lcmfn0cl |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |
8 |
5 7
|
sylan2br |
⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ ¬ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |
9 |
8
|
nnnn0d |
⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ ¬ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ0 ) |
10 |
4 9
|
pm2.61dan |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) ∈ ℕ0 ) |