Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑚 ∥ 𝑘 ↔ 𝑚 ∥ 𝐾 ) ) |
2 |
1
|
ralbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) |
3 |
|
breq2 |
⊢ ( 𝑘 = 𝐾 → ( ( lcm ‘ 𝑍 ) ∥ 𝑘 ↔ ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) |
4 |
2 3
|
imbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) ) |
5 |
4
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ∥ 𝑘 ) → ( 𝐾 ∈ ℤ → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑍 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑍 ) lcm 𝑛 ) ) → ( 𝐾 ∈ ℤ → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) ) |
7 |
|
lcmfunsnlem |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑍 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑍 ) lcm 𝑛 ) ) ) |
8 |
6 7
|
syl11 |
⊢ ( 𝐾 ∈ ℤ → ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) ) |
9 |
8
|
3impib |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ∥ 𝐾 ) ) |