Step |
Hyp |
Ref |
Expression |
1 |
|
df-nel |
⊢ ( 0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍 ) |
2 |
|
lcmfn0cl |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |
3 |
2
|
nnne0d |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ≠ 0 ) |
4 |
3
|
3expia |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( 0 ∉ 𝑍 → ( lcm ‘ 𝑍 ) ≠ 0 ) ) |
5 |
1 4
|
syl5bir |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ¬ 0 ∈ 𝑍 → ( lcm ‘ 𝑍 ) ≠ 0 ) ) |
6 |
5
|
necon4bd |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( lcm ‘ 𝑍 ) = 0 → 0 ∈ 𝑍 ) ) |
7 |
|
lcmf0val |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) = 0 ) |
8 |
7
|
ex |
⊢ ( 𝑍 ⊆ ℤ → ( 0 ∈ 𝑍 → ( lcm ‘ 𝑍 ) = 0 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( 0 ∈ 𝑍 → ( lcm ‘ 𝑍 ) = 0 ) ) |
10 |
6 9
|
impbid |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( lcm ‘ 𝑍 ) = 0 ↔ 0 ∈ 𝑍 ) ) |