| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcmfn0val | ⊢ ( ( 𝑍  ⊆  ℤ  ∧  𝑍  ∈  Fin  ∧  0  ∉  𝑍 )  →  ( lcm ‘ 𝑍 )  =  inf ( { 𝑘  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘 } ,  ℝ ,   <  ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( 𝑍  ⊆  ℤ  ∧  𝑍  ∈  Fin  ∧  0  ∉  𝑍 )  ∧  ( 𝐾  ∈  ℕ  ∧  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝐾 ) )  →  ( lcm ‘ 𝑍 )  =  inf ( { 𝑘  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘 } ,  ℝ ,   <  ) ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑘  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘 }  ⊆  ℕ | 
						
							| 4 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 5 | 3 4 | sseqtri | ⊢ { 𝑘  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘 }  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑍  ⊆  ℤ  ∧  ( 𝐾  ∈  ℕ  ∧  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝐾 ) )  →  ( 𝐾  ∈  ℕ  ∧  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝐾 ) ) | 
						
							| 7 |  | breq2 | ⊢ ( 𝑘  =  𝐾  →  ( 𝑚  ∥  𝑘  ↔  𝑚  ∥  𝐾 ) ) | 
						
							| 8 | 7 | ralbidv | ⊢ ( 𝑘  =  𝐾  →  ( ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘  ↔  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝐾 ) ) | 
						
							| 9 | 8 | elrab | ⊢ ( 𝐾  ∈  { 𝑘  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘 }  ↔  ( 𝐾  ∈  ℕ  ∧  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝐾 ) ) | 
						
							| 10 | 6 9 | sylibr | ⊢ ( ( 𝑍  ⊆  ℤ  ∧  ( 𝐾  ∈  ℕ  ∧  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝐾 ) )  →  𝐾  ∈  { 𝑘  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘 } ) | 
						
							| 11 |  | infssuzle | ⊢ ( ( { 𝑘  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘 }  ⊆  ( ℤ≥ ‘ 1 )  ∧  𝐾  ∈  { 𝑘  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘 } )  →  inf ( { 𝑘  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘 } ,  ℝ ,   <  )  ≤  𝐾 ) | 
						
							| 12 | 5 10 11 | sylancr | ⊢ ( ( 𝑍  ⊆  ℤ  ∧  ( 𝐾  ∈  ℕ  ∧  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝐾 ) )  →  inf ( { 𝑘  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘 } ,  ℝ ,   <  )  ≤  𝐾 ) | 
						
							| 13 | 12 | 3ad2antl1 | ⊢ ( ( ( 𝑍  ⊆  ℤ  ∧  𝑍  ∈  Fin  ∧  0  ∉  𝑍 )  ∧  ( 𝐾  ∈  ℕ  ∧  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝐾 ) )  →  inf ( { 𝑘  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝑘 } ,  ℝ ,   <  )  ≤  𝐾 ) | 
						
							| 14 | 2 13 | eqbrtrd | ⊢ ( ( ( 𝑍  ⊆  ℤ  ∧  𝑍  ∈  Fin  ∧  0  ∉  𝑍 )  ∧  ( 𝐾  ∈  ℕ  ∧  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝐾 ) )  →  ( lcm ‘ 𝑍 )  ≤  𝐾 ) | 
						
							| 15 | 14 | ex | ⊢ ( ( 𝑍  ⊆  ℤ  ∧  𝑍  ∈  Fin  ∧  0  ∉  𝑍 )  →  ( ( 𝐾  ∈  ℕ  ∧  ∀ 𝑚  ∈  𝑍 𝑚  ∥  𝐾 )  →  ( lcm ‘ 𝑍 )  ≤  𝐾 ) ) |