Step |
Hyp |
Ref |
Expression |
1 |
|
fzssz |
⊢ ( 1 ... 𝑁 ) ⊆ ℤ |
2 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ⊆ ℤ ) |
3 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ∈ Fin ) |
4 |
|
0nelfz1 |
⊢ 0 ∉ ( 1 ... 𝑁 ) |
5 |
4
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 ∉ ( 1 ... 𝑁 ) ) |
6 |
2 3 5
|
3jca |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ∧ 0 ∉ ( 1 ... 𝑁 ) ) ) |
7 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
8 |
7
|
faccld |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℕ ) |
9 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... 𝑁 ) → 𝑚 ∈ ℕ ) |
10 |
|
elfzuz3 |
⊢ ( 𝑚 ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
12 |
|
dvdsfac |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑚 ∥ ( ! ‘ 𝑁 ) ) |
13 |
9 11 12
|
syl2an2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑚 ∥ ( ! ‘ 𝑁 ) ) |
14 |
13
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑚 ∈ ( 1 ... 𝑁 ) 𝑚 ∥ ( ! ‘ 𝑁 ) ) |
15 |
8 14
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) ∈ ℕ ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) 𝑚 ∥ ( ! ‘ 𝑁 ) ) ) |
16 |
|
lcmfledvds |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ∧ 0 ∉ ( 1 ... 𝑁 ) ) → ( ( ( ! ‘ 𝑁 ) ∈ ℕ ∧ ∀ 𝑚 ∈ ( 1 ... 𝑁 ) 𝑚 ∥ ( ! ‘ 𝑁 ) ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ≤ ( ! ‘ 𝑁 ) ) ) |
17 |
6 15 16
|
sylc |
⊢ ( 𝑁 ∈ ℕ → ( lcm ‘ ( 1 ... 𝑁 ) ) ≤ ( ! ‘ 𝑁 ) ) |