Description: Closure of the _lcm function. (Contributed by AV, 21-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfn0cl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ⊆ ℕ | |
| 2 | lcmfcllem | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ) | |
| 3 | 1 2 | sselid | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |