Metamath Proof Explorer


Theorem lcmfn0cl

Description: Closure of the _lcm function. (Contributed by AV, 21-Aug-2020)

Ref Expression
Assertion lcmfn0cl ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm𝑍 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑛 ∈ ℕ ∣ ∀ 𝑚𝑍 𝑚𝑛 } ⊆ ℕ
2 lcmfcllem ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm𝑍 ) ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚𝑍 𝑚𝑛 } )
3 1 2 sselid ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm𝑍 ) ∈ ℕ )