Metamath Proof Explorer


Theorem lcmfnncl

Description: Closure of the _lcm function. (Contributed by AV, 20-Apr-2020)

Ref Expression
Assertion lcmfnncl ( ( 𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin ) → ( lcm𝑍 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 id ( 𝑍 ⊆ ℕ → 𝑍 ⊆ ℕ )
2 nnssz ℕ ⊆ ℤ
3 1 2 sstrdi ( 𝑍 ⊆ ℕ → 𝑍 ⊆ ℤ )
4 3 adantr ( ( 𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin ) → 𝑍 ⊆ ℤ )
5 simpr ( ( 𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin ) → 𝑍 ∈ Fin )
6 0nnn ¬ 0 ∈ ℕ
7 ssel ( 𝑍 ⊆ ℕ → ( 0 ∈ 𝑍 → 0 ∈ ℕ ) )
8 6 7 mtoi ( 𝑍 ⊆ ℕ → ¬ 0 ∈ 𝑍 )
9 df-nel ( 0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍 )
10 8 9 sylibr ( 𝑍 ⊆ ℕ → 0 ∉ 𝑍 )
11 10 adantr ( ( 𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin ) → 0 ∉ 𝑍 )
12 lcmfn0cl ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm𝑍 ) ∈ ℕ )
13 4 5 11 12 syl3anc ( ( 𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin ) → ( lcm𝑍 ) ∈ ℕ )