Metamath Proof Explorer


Theorem lcmfsn

Description: The least common multiple of a singleton is its absolute value. (Contributed by AV, 22-Aug-2020)

Ref Expression
Assertion lcmfsn ( 𝑀 ∈ ℤ → ( lcm ‘ { 𝑀 } ) = ( abs ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 dfsn2 { 𝑀 } = { 𝑀 , 𝑀 }
2 1 a1i ( 𝑀 ∈ ℤ → { 𝑀 } = { 𝑀 , 𝑀 } )
3 2 fveq2d ( 𝑀 ∈ ℤ → ( lcm ‘ { 𝑀 } ) = ( lcm ‘ { 𝑀 , 𝑀 } ) )
4 lcmfpr ( ( 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( lcm ‘ { 𝑀 , 𝑀 } ) = ( 𝑀 lcm 𝑀 ) )
5 4 anidms ( 𝑀 ∈ ℤ → ( lcm ‘ { 𝑀 , 𝑀 } ) = ( 𝑀 lcm 𝑀 ) )
6 lcmid ( 𝑀 ∈ ℤ → ( 𝑀 lcm 𝑀 ) = ( abs ‘ 𝑀 ) )
7 3 5 6 3eqtrd ( 𝑀 ∈ ℤ → ( lcm ‘ { 𝑀 } ) = ( abs ‘ 𝑀 ) )