Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
eltpg |
⊢ ( 0 ∈ ℤ → ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) |
4 |
3
|
biimpri |
⊢ ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
5 |
|
tpssi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ) |
6 |
4 5
|
anim12ci |
⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ∧ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
7 |
|
lcmf0val |
⊢ ( ( { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ∧ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 0 ) |
8 |
6 7
|
syl |
⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 0 ) |
9 |
|
0zd |
⊢ ( 𝐶 ∈ ℤ → 0 ∈ ℤ ) |
10 |
|
lcmcom |
⊢ ( ( 0 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 lcm 𝐶 ) = ( 𝐶 lcm 0 ) ) |
11 |
9 10
|
mpancom |
⊢ ( 𝐶 ∈ ℤ → ( 0 lcm 𝐶 ) = ( 𝐶 lcm 0 ) ) |
12 |
|
lcm0val |
⊢ ( 𝐶 ∈ ℤ → ( 𝐶 lcm 0 ) = 0 ) |
13 |
11 12
|
eqtrd |
⊢ ( 𝐶 ∈ ℤ → ( 0 lcm 𝐶 ) = 0 ) |
14 |
13
|
eqcomd |
⊢ ( 𝐶 ∈ ℤ → 0 = ( 0 lcm 𝐶 ) ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( 0 lcm 𝐶 ) ) |
16 |
15
|
adantl |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( 0 lcm 𝐶 ) ) |
17 |
|
0zd |
⊢ ( 𝐵 ∈ ℤ → 0 ∈ ℤ ) |
18 |
|
lcmcom |
⊢ ( ( 0 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 lcm 𝐵 ) = ( 𝐵 lcm 0 ) ) |
19 |
17 18
|
mpancom |
⊢ ( 𝐵 ∈ ℤ → ( 0 lcm 𝐵 ) = ( 𝐵 lcm 0 ) ) |
20 |
|
lcm0val |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 lcm 0 ) = 0 ) |
21 |
19 20
|
eqtrd |
⊢ ( 𝐵 ∈ ℤ → ( 0 lcm 𝐵 ) = 0 ) |
22 |
21
|
eqcomd |
⊢ ( 𝐵 ∈ ℤ → 0 = ( 0 lcm 𝐵 ) ) |
23 |
22
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( 0 lcm 𝐵 ) ) |
24 |
23
|
adantl |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( 0 lcm 𝐵 ) ) |
25 |
24
|
oveq1d |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 0 lcm 𝐶 ) = ( ( 0 lcm 𝐵 ) lcm 𝐶 ) ) |
26 |
|
oveq1 |
⊢ ( 0 = 𝐴 → ( 0 lcm 𝐵 ) = ( 𝐴 lcm 𝐵 ) ) |
27 |
26
|
oveq1d |
⊢ ( 0 = 𝐴 → ( ( 0 lcm 𝐵 ) lcm 𝐶 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
28 |
27
|
adantr |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 0 lcm 𝐵 ) lcm 𝐶 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
29 |
16 25 28
|
3eqtrd |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
30 |
|
lcm0val |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 lcm 0 ) = 0 ) |
31 |
30
|
eqcomd |
⊢ ( 𝐴 ∈ ℤ → 0 = ( 𝐴 lcm 0 ) ) |
32 |
31
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( 𝐴 lcm 0 ) ) |
33 |
32
|
adantl |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( 𝐴 lcm 0 ) ) |
34 |
33
|
oveq1d |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 0 lcm 𝐶 ) = ( ( 𝐴 lcm 0 ) lcm 𝐶 ) ) |
35 |
13
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 lcm 𝐶 ) = 0 ) |
36 |
35
|
adantl |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 0 lcm 𝐶 ) = 0 ) |
37 |
|
oveq2 |
⊢ ( 0 = 𝐵 → ( 𝐴 lcm 0 ) = ( 𝐴 lcm 𝐵 ) ) |
38 |
37
|
adantr |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 lcm 0 ) = ( 𝐴 lcm 𝐵 ) ) |
39 |
38
|
oveq1d |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 0 ) lcm 𝐶 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
40 |
34 36 39
|
3eqtr3d |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
41 |
|
lcmcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ0 ) |
42 |
41
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 lcm 𝐵 ) ∈ ℤ ) |
43 |
|
lcm0val |
⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℤ → ( ( 𝐴 lcm 𝐵 ) lcm 0 ) = 0 ) |
44 |
43
|
eqcomd |
⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℤ → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 0 ) ) |
45 |
42 44
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 0 ) ) |
46 |
45
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 0 ) ) |
47 |
|
oveq2 |
⊢ ( 0 = 𝐶 → ( ( 𝐴 lcm 𝐵 ) lcm 0 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
48 |
46 47
|
sylan9eqr |
⊢ ( ( 0 = 𝐶 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
49 |
29 40 48
|
3jaoian |
⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
50 |
8 49
|
eqtrd |
⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
51 |
42
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 lcm 𝐵 ) ∈ ℤ ) |
52 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℤ ) |
53 |
51 52
|
jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
54 |
53
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
55 |
|
dvdslcm |
⊢ ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
56 |
54 55
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
57 |
|
dvdslcm |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) ) |
58 |
57
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) ) |
59 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
60 |
|
lcmcl |
⊢ ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ0 ) |
61 |
53 60
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ0 ) |
62 |
61
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) |
63 |
59 51 62
|
3jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) ) |
64 |
|
dvdstr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) → ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
65 |
63 64
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
66 |
65
|
expd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
67 |
66
|
com12 |
⊢ ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
68 |
67
|
adantr |
⊢ ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
69 |
58 68
|
mpcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
70 |
69
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
71 |
70
|
com12 |
⊢ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
72 |
71
|
adantr |
⊢ ( ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
73 |
72
|
impcom |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
74 |
|
simpr |
⊢ ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) |
75 |
57 74
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) |
76 |
75
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) |
77 |
76
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) |
78 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
79 |
78 51 62
|
3jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) ) |
80 |
79
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐵 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) ) |
81 |
|
dvdstr |
⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) → ( ( 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
82 |
80 81
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
83 |
77 82
|
mpand |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
84 |
83
|
com12 |
⊢ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
85 |
84
|
adantr |
⊢ ( ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
86 |
85
|
impcom |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
87 |
|
simpr |
⊢ ( ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
88 |
87
|
adantl |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
89 |
73 86 88
|
3jca |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
90 |
56 89
|
mpdan |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
91 |
|
breq1 |
⊢ ( 𝑚 = 𝐴 → ( 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
92 |
|
breq1 |
⊢ ( 𝑚 = 𝐵 → ( 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
93 |
|
breq1 |
⊢ ( 𝑚 = 𝐶 → ( 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
94 |
91 92 93
|
raltpg |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
95 |
94
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
96 |
90 95
|
mpbird |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
97 |
|
breq1 |
⊢ ( 𝑚 = 𝐴 → ( 𝑚 ∥ 𝑘 ↔ 𝐴 ∥ 𝑘 ) ) |
98 |
|
breq1 |
⊢ ( 𝑚 = 𝐵 → ( 𝑚 ∥ 𝑘 ↔ 𝐵 ∥ 𝑘 ) ) |
99 |
|
breq1 |
⊢ ( 𝑚 = 𝐶 → ( 𝑚 ∥ 𝑘 ↔ 𝐶 ∥ 𝑘 ) ) |
100 |
97 98 99
|
raltpg |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 ↔ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) ) |
101 |
100
|
ad2antlr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 ↔ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) ) |
102 |
|
simpr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
103 |
51
|
ad2antlr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 lcm 𝐵 ) ∈ ℤ ) |
104 |
52
|
ad2antlr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
105 |
102 103 104
|
3jca |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
106 |
105
|
adantr |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
107 |
|
3ioran |
⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ↔ ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) ) |
108 |
|
eqcom |
⊢ ( 0 = 𝐴 ↔ 𝐴 = 0 ) |
109 |
108
|
notbii |
⊢ ( ¬ 0 = 𝐴 ↔ ¬ 𝐴 = 0 ) |
110 |
|
eqcom |
⊢ ( 0 = 𝐵 ↔ 𝐵 = 0 ) |
111 |
110
|
notbii |
⊢ ( ¬ 0 = 𝐵 ↔ ¬ 𝐵 = 0 ) |
112 |
109 111
|
anbi12i |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) ↔ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) |
113 |
112
|
biimpi |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) |
114 |
|
ioran |
⊢ ( ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ↔ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) |
115 |
113 114
|
sylibr |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
116 |
115
|
3adant3 |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
117 |
107 116
|
sylbi |
⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
118 |
|
id |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
119 |
118
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
120 |
117 119
|
anim12ci |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
121 |
|
lcmn0cl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ ) |
122 |
120 121
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ ) |
123 |
|
nnne0 |
⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℕ → ( 𝐴 lcm 𝐵 ) ≠ 0 ) |
124 |
123
|
neneqd |
⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℕ → ¬ ( 𝐴 lcm 𝐵 ) = 0 ) |
125 |
122 124
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ ( 𝐴 lcm 𝐵 ) = 0 ) |
126 |
|
eqcom |
⊢ ( 0 = 𝐶 ↔ 𝐶 = 0 ) |
127 |
126
|
notbii |
⊢ ( ¬ 0 = 𝐶 ↔ ¬ 𝐶 = 0 ) |
128 |
127
|
biimpi |
⊢ ( ¬ 0 = 𝐶 → ¬ 𝐶 = 0 ) |
129 |
128
|
3ad2ant3 |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) → ¬ 𝐶 = 0 ) |
130 |
107 129
|
sylbi |
⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ 𝐶 = 0 ) |
131 |
130
|
adantr |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ 𝐶 = 0 ) |
132 |
125 131
|
jca |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
133 |
132
|
adantr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
134 |
133
|
adantr |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
135 |
|
ioran |
⊢ ( ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ↔ ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
136 |
134 135
|
sylibr |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) |
137 |
119
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
138 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
139 |
137 138
|
anim12ci |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ) |
140 |
|
3anass |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ↔ ( 𝑘 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ) |
141 |
139 140
|
sylibr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
142 |
|
lcmdvds |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) |
143 |
141 142
|
syl |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) |
144 |
143
|
com12 |
⊢ ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ) → ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) |
145 |
144
|
3adant3 |
⊢ ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) |
146 |
145
|
impcom |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) |
147 |
|
simp3 |
⊢ ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → 𝐶 ∥ 𝑘 ) |
148 |
147
|
adantl |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → 𝐶 ∥ 𝑘 ) |
149 |
|
lcmledvds |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) → ( ( ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) |
150 |
149
|
imp |
⊢ ( ( ( ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) |
151 |
106 136 146 148 150
|
syl22anc |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) |
152 |
151
|
ex |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) |
153 |
101 152
|
sylbid |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) |
154 |
153
|
ralrimiva |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) |
155 |
96 154
|
jca |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) ) |
156 |
109
|
biimpi |
⊢ ( ¬ 0 = 𝐴 → ¬ 𝐴 = 0 ) |
157 |
111
|
biimpi |
⊢ ( ¬ 0 = 𝐵 → ¬ 𝐵 = 0 ) |
158 |
156 157
|
anim12i |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) |
159 |
158 114
|
sylibr |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
160 |
159
|
3adant3 |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
161 |
107 160
|
sylbi |
⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
162 |
161 119
|
anim12ci |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
163 |
162 121
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ ) |
164 |
163 124
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ ( 𝐴 lcm 𝐵 ) = 0 ) |
165 |
164 131
|
jca |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
166 |
165 135
|
sylibr |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) |
167 |
54 166
|
jca |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) ) |
168 |
|
lcmn0cl |
⊢ ( ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ ) |
169 |
167 168
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ ) |
170 |
5
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ) |
171 |
|
tpfi |
⊢ { 𝐴 , 𝐵 , 𝐶 } ∈ Fin |
172 |
171
|
a1i |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → { 𝐴 , 𝐵 , 𝐶 } ∈ Fin ) |
173 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) ) |
174 |
173
|
biimpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) ) |
175 |
174
|
con3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
176 |
175
|
impcom |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
177 |
|
df-nel |
⊢ ( 0 ∉ { 𝐴 , 𝐵 , 𝐶 } ↔ ¬ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
178 |
176 177
|
sylibr |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 ∉ { 𝐴 , 𝐵 , 𝐶 } ) |
179 |
|
lcmf |
⊢ ( ( ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ ∧ ( { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ∧ { 𝐴 , 𝐵 , 𝐶 } ∈ Fin ∧ 0 ∉ { 𝐴 , 𝐵 , 𝐶 } ) ) → ( ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) = ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) ↔ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) ) ) |
180 |
169 170 172 178 179
|
syl13anc |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) = ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) ↔ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) ) ) |
181 |
155 180
|
mpbird |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) = ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) ) |
182 |
181
|
eqcomd |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
183 |
50 182
|
pm2.61ian |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |