| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
⊢ 0 ∈ ℤ |
| 2 |
|
eltpg |
⊢ ( 0 ∈ ℤ → ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) |
| 4 |
3
|
biimpri |
⊢ ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 5 |
|
tpssi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ) |
| 6 |
4 5
|
anim12ci |
⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ∧ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 7 |
|
lcmf0val |
⊢ ( ( { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ∧ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 0 ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 0 ) |
| 9 |
|
0zd |
⊢ ( 𝐶 ∈ ℤ → 0 ∈ ℤ ) |
| 10 |
|
lcmcom |
⊢ ( ( 0 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 lcm 𝐶 ) = ( 𝐶 lcm 0 ) ) |
| 11 |
9 10
|
mpancom |
⊢ ( 𝐶 ∈ ℤ → ( 0 lcm 𝐶 ) = ( 𝐶 lcm 0 ) ) |
| 12 |
|
lcm0val |
⊢ ( 𝐶 ∈ ℤ → ( 𝐶 lcm 0 ) = 0 ) |
| 13 |
11 12
|
eqtrd |
⊢ ( 𝐶 ∈ ℤ → ( 0 lcm 𝐶 ) = 0 ) |
| 14 |
13
|
eqcomd |
⊢ ( 𝐶 ∈ ℤ → 0 = ( 0 lcm 𝐶 ) ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( 0 lcm 𝐶 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( 0 lcm 𝐶 ) ) |
| 17 |
|
0zd |
⊢ ( 𝐵 ∈ ℤ → 0 ∈ ℤ ) |
| 18 |
|
lcmcom |
⊢ ( ( 0 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 lcm 𝐵 ) = ( 𝐵 lcm 0 ) ) |
| 19 |
17 18
|
mpancom |
⊢ ( 𝐵 ∈ ℤ → ( 0 lcm 𝐵 ) = ( 𝐵 lcm 0 ) ) |
| 20 |
|
lcm0val |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 lcm 0 ) = 0 ) |
| 21 |
19 20
|
eqtrd |
⊢ ( 𝐵 ∈ ℤ → ( 0 lcm 𝐵 ) = 0 ) |
| 22 |
21
|
eqcomd |
⊢ ( 𝐵 ∈ ℤ → 0 = ( 0 lcm 𝐵 ) ) |
| 23 |
22
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( 0 lcm 𝐵 ) ) |
| 24 |
23
|
adantl |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( 0 lcm 𝐵 ) ) |
| 25 |
24
|
oveq1d |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 0 lcm 𝐶 ) = ( ( 0 lcm 𝐵 ) lcm 𝐶 ) ) |
| 26 |
|
oveq1 |
⊢ ( 0 = 𝐴 → ( 0 lcm 𝐵 ) = ( 𝐴 lcm 𝐵 ) ) |
| 27 |
26
|
oveq1d |
⊢ ( 0 = 𝐴 → ( ( 0 lcm 𝐵 ) lcm 𝐶 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 0 lcm 𝐵 ) lcm 𝐶 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 29 |
16 25 28
|
3eqtrd |
⊢ ( ( 0 = 𝐴 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 30 |
|
lcm0val |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 lcm 0 ) = 0 ) |
| 31 |
30
|
eqcomd |
⊢ ( 𝐴 ∈ ℤ → 0 = ( 𝐴 lcm 0 ) ) |
| 32 |
31
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( 𝐴 lcm 0 ) ) |
| 33 |
32
|
adantl |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( 𝐴 lcm 0 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 0 lcm 𝐶 ) = ( ( 𝐴 lcm 0 ) lcm 𝐶 ) ) |
| 35 |
13
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 lcm 𝐶 ) = 0 ) |
| 36 |
35
|
adantl |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 0 lcm 𝐶 ) = 0 ) |
| 37 |
|
oveq2 |
⊢ ( 0 = 𝐵 → ( 𝐴 lcm 0 ) = ( 𝐴 lcm 𝐵 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 lcm 0 ) = ( 𝐴 lcm 𝐵 ) ) |
| 39 |
38
|
oveq1d |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 0 ) lcm 𝐶 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 40 |
34 36 39
|
3eqtr3d |
⊢ ( ( 0 = 𝐵 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 41 |
|
lcmcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ0 ) |
| 42 |
41
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 lcm 𝐵 ) ∈ ℤ ) |
| 43 |
|
lcm0val |
⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℤ → ( ( 𝐴 lcm 𝐵 ) lcm 0 ) = 0 ) |
| 44 |
43
|
eqcomd |
⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℤ → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 0 ) ) |
| 45 |
42 44
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 0 ) ) |
| 46 |
45
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 0 ) ) |
| 47 |
|
oveq2 |
⊢ ( 0 = 𝐶 → ( ( 𝐴 lcm 𝐵 ) lcm 0 ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 48 |
46 47
|
sylan9eqr |
⊢ ( ( 0 = 𝐶 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 49 |
29 40 48
|
3jaoian |
⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 50 |
8 49
|
eqtrd |
⊢ ( ( ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 51 |
42
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 lcm 𝐵 ) ∈ ℤ ) |
| 52 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℤ ) |
| 53 |
51 52
|
jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
| 54 |
53
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
| 55 |
|
dvdslcm |
⊢ ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 57 |
|
dvdslcm |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) ) |
| 58 |
57
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) ) |
| 59 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
| 60 |
|
lcmcl |
⊢ ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ0 ) |
| 61 |
53 60
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ0 ) |
| 62 |
61
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) |
| 63 |
59 51 62
|
3jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) ) |
| 64 |
|
dvdstr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) → ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 65 |
63 64
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 66 |
65
|
expd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
| 67 |
66
|
com12 |
⊢ ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
| 69 |
58 68
|
mpcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 70 |
69
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 71 |
70
|
com12 |
⊢ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 72 |
71
|
adantr |
⊢ ( ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 73 |
72
|
impcom |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 74 |
|
simpr |
⊢ ( ( 𝐴 ∥ ( 𝐴 lcm 𝐵 ) ∧ 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) |
| 75 |
57 74
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) |
| 76 |
75
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) |
| 77 |
76
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ) |
| 78 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
| 79 |
78 51 62
|
3jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) ) |
| 80 |
79
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐵 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) ) |
| 81 |
|
dvdstr |
⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℤ ) → ( ( 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 82 |
80 81
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐵 ∥ ( 𝐴 lcm 𝐵 ) ∧ ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 83 |
77 82
|
mpand |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 84 |
83
|
com12 |
⊢ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 85 |
84
|
adantr |
⊢ ( ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 86 |
85
|
impcom |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 87 |
|
simpr |
⊢ ( ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) → 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 88 |
87
|
adantl |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 89 |
73 86 88
|
3jca |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) → ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 90 |
56 89
|
mpdan |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 91 |
|
breq1 |
⊢ ( 𝑚 = 𝐴 → ( 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 92 |
|
breq1 |
⊢ ( 𝑚 = 𝐵 → ( 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 93 |
|
breq1 |
⊢ ( 𝑚 = 𝐶 → ( 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) |
| 94 |
91 92 93
|
raltpg |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
| 95 |
94
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ↔ ( 𝐴 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐵 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ 𝐶 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) ) ) |
| 96 |
90 95
|
mpbird |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 97 |
|
breq1 |
⊢ ( 𝑚 = 𝐴 → ( 𝑚 ∥ 𝑘 ↔ 𝐴 ∥ 𝑘 ) ) |
| 98 |
|
breq1 |
⊢ ( 𝑚 = 𝐵 → ( 𝑚 ∥ 𝑘 ↔ 𝐵 ∥ 𝑘 ) ) |
| 99 |
|
breq1 |
⊢ ( 𝑚 = 𝐶 → ( 𝑚 ∥ 𝑘 ↔ 𝐶 ∥ 𝑘 ) ) |
| 100 |
97 98 99
|
raltpg |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 ↔ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) ) |
| 101 |
100
|
ad2antlr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 ↔ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) ) |
| 102 |
|
simpr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 103 |
51
|
ad2antlr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 lcm 𝐵 ) ∈ ℤ ) |
| 104 |
52
|
ad2antlr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
| 105 |
102 103 104
|
3jca |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
| 106 |
105
|
adantr |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) |
| 107 |
|
3ioran |
⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ↔ ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) ) |
| 108 |
|
eqcom |
⊢ ( 0 = 𝐴 ↔ 𝐴 = 0 ) |
| 109 |
108
|
notbii |
⊢ ( ¬ 0 = 𝐴 ↔ ¬ 𝐴 = 0 ) |
| 110 |
|
eqcom |
⊢ ( 0 = 𝐵 ↔ 𝐵 = 0 ) |
| 111 |
110
|
notbii |
⊢ ( ¬ 0 = 𝐵 ↔ ¬ 𝐵 = 0 ) |
| 112 |
109 111
|
anbi12i |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) ↔ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) |
| 113 |
112
|
biimpi |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) |
| 114 |
|
ioran |
⊢ ( ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ↔ ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) |
| 115 |
113 114
|
sylibr |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 116 |
115
|
3adant3 |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 117 |
107 116
|
sylbi |
⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 118 |
|
id |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 119 |
118
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 120 |
117 119
|
anim12ci |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
| 121 |
|
lcmn0cl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ ) |
| 122 |
120 121
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ ) |
| 123 |
|
nnne0 |
⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℕ → ( 𝐴 lcm 𝐵 ) ≠ 0 ) |
| 124 |
123
|
neneqd |
⊢ ( ( 𝐴 lcm 𝐵 ) ∈ ℕ → ¬ ( 𝐴 lcm 𝐵 ) = 0 ) |
| 125 |
122 124
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ ( 𝐴 lcm 𝐵 ) = 0 ) |
| 126 |
|
eqcom |
⊢ ( 0 = 𝐶 ↔ 𝐶 = 0 ) |
| 127 |
126
|
notbii |
⊢ ( ¬ 0 = 𝐶 ↔ ¬ 𝐶 = 0 ) |
| 128 |
127
|
biimpi |
⊢ ( ¬ 0 = 𝐶 → ¬ 𝐶 = 0 ) |
| 129 |
128
|
3ad2ant3 |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) → ¬ 𝐶 = 0 ) |
| 130 |
107 129
|
sylbi |
⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ 𝐶 = 0 ) |
| 131 |
130
|
adantr |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ 𝐶 = 0 ) |
| 132 |
125 131
|
jca |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
| 133 |
132
|
adantr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
| 134 |
133
|
adantr |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
| 135 |
|
ioran |
⊢ ( ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ↔ ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
| 136 |
134 135
|
sylibr |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) |
| 137 |
119
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 138 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 139 |
137 138
|
anim12ci |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ) |
| 140 |
|
3anass |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ↔ ( 𝑘 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ) |
| 141 |
139 140
|
sylibr |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 142 |
|
lcmdvds |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) |
| 143 |
141 142
|
syl |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) |
| 144 |
143
|
com12 |
⊢ ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ) → ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) |
| 145 |
144
|
3adant3 |
⊢ ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) ) |
| 146 |
145
|
impcom |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ) |
| 147 |
|
simp3 |
⊢ ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → 𝐶 ∥ 𝑘 ) |
| 148 |
147
|
adantl |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → 𝐶 ∥ 𝑘 ) |
| 149 |
|
lcmledvds |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) → ( ( ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) |
| 150 |
149
|
imp |
⊢ ( ( ( ( 𝑘 ∈ ℕ ∧ ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) ∧ ( ( 𝐴 lcm 𝐵 ) ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) |
| 151 |
106 136 146 148 150
|
syl22anc |
⊢ ( ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) |
| 152 |
151
|
ex |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘 ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) |
| 153 |
101 152
|
sylbid |
⊢ ( ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) |
| 154 |
153
|
ralrimiva |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) |
| 155 |
96 154
|
jca |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) ) |
| 156 |
109
|
biimpi |
⊢ ( ¬ 0 = 𝐴 → ¬ 𝐴 = 0 ) |
| 157 |
111
|
biimpi |
⊢ ( ¬ 0 = 𝐵 → ¬ 𝐵 = 0 ) |
| 158 |
156 157
|
anim12i |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ( ¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0 ) ) |
| 159 |
158 114
|
sylibr |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 160 |
159
|
3adant3 |
⊢ ( ( ¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 161 |
107 160
|
sylbi |
⊢ ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 162 |
161 119
|
anim12ci |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
| 163 |
162 121
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 lcm 𝐵 ) ∈ ℕ ) |
| 164 |
163 124
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ ( 𝐴 lcm 𝐵 ) = 0 ) |
| 165 |
164 131
|
jca |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ¬ ( 𝐴 lcm 𝐵 ) = 0 ∧ ¬ 𝐶 = 0 ) ) |
| 166 |
165 135
|
sylibr |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) |
| 167 |
54 166
|
jca |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) ) |
| 168 |
|
lcmn0cl |
⊢ ( ( ( ( 𝐴 lcm 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ¬ ( ( 𝐴 lcm 𝐵 ) = 0 ∨ 𝐶 = 0 ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ ) |
| 169 |
167 168
|
syl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ ) |
| 170 |
5
|
adantl |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ) |
| 171 |
|
tpfi |
⊢ { 𝐴 , 𝐵 , 𝐶 } ∈ Fin |
| 172 |
171
|
a1i |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → { 𝐴 , 𝐵 , 𝐶 } ∈ Fin ) |
| 173 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) ) |
| 174 |
173
|
biimpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 0 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ) ) |
| 175 |
174
|
con3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) → ¬ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 176 |
175
|
impcom |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ¬ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 177 |
|
df-nel |
⊢ ( 0 ∉ { 𝐴 , 𝐵 , 𝐶 } ↔ ¬ 0 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 178 |
176 177
|
sylibr |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → 0 ∉ { 𝐴 , 𝐵 , 𝐶 } ) |
| 179 |
|
lcmf |
⊢ ( ( ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∈ ℕ ∧ ( { 𝐴 , 𝐵 , 𝐶 } ⊆ ℤ ∧ { 𝐴 , 𝐵 , 𝐶 } ∈ Fin ∧ 0 ∉ { 𝐴 , 𝐵 , 𝐶 } ) ) → ( ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) = ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) ↔ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) ) ) |
| 180 |
169 170 172 178 179
|
syl13anc |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) = ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) ↔ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝑚 ∥ 𝑘 → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ≤ 𝑘 ) ) ) ) |
| 181 |
155 180
|
mpbird |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) = ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 182 |
181
|
eqcomd |
⊢ ( ( ¬ ( 0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶 ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |
| 183 |
50 182
|
pm2.61ian |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( lcm ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐴 lcm 𝐵 ) lcm 𝐶 ) ) |