| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cleq1lem |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) |
| 2 |
|
uneq2 |
⊢ ( 𝑥 = ∅ → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ ∅ ) ) |
| 3 |
|
un0 |
⊢ ( 𝑌 ∪ ∅ ) = 𝑌 |
| 4 |
2 3
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝑌 ∪ 𝑥 ) = 𝑌 ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ 𝑌 ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( lcm ‘ 𝑥 ) = ( lcm ‘ ∅ ) ) |
| 7 |
|
lcmf0 |
⊢ ( lcm ‘ ∅ ) = 1 |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( lcm ‘ 𝑥 ) = 1 ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) |
| 10 |
5 9
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ 𝑌 ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) ) |
| 11 |
1 10
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ 𝑌 ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) ) ) |
| 12 |
|
cleq1lem |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) |
| 13 |
|
uneq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ 𝑦 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑦 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) |
| 17 |
14 16
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) |
| 18 |
12 17
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) ) |
| 19 |
|
cleq1lem |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) |
| 20 |
|
uneq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ 𝑥 ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 24 |
21 23
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 25 |
19 24
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 26 |
|
cleq1lem |
⊢ ( 𝑥 = 𝑍 → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( 𝑍 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) |
| 27 |
|
uneq2 |
⊢ ( 𝑥 = 𝑍 → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ 𝑍 ) ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝑥 = 𝑍 → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑥 = 𝑍 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑍 ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝑥 = 𝑍 → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) |
| 31 |
28 30
|
eqeq12d |
⊢ ( 𝑥 = 𝑍 → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) |
| 32 |
26 31
|
imbi12d |
⊢ ( 𝑥 = 𝑍 → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( 𝑍 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) ) |
| 33 |
|
lcmfcl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ 𝑌 ) ∈ ℕ0 ) |
| 34 |
33
|
nn0zd |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ 𝑌 ) ∈ ℤ ) |
| 35 |
|
lcm1 |
⊢ ( ( lcm ‘ 𝑌 ) ∈ ℤ → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( abs ‘ ( lcm ‘ 𝑌 ) ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( abs ‘ ( lcm ‘ 𝑌 ) ) ) |
| 37 |
|
nn0re |
⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → ( lcm ‘ 𝑌 ) ∈ ℝ ) |
| 38 |
|
nn0ge0 |
⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → 0 ≤ ( lcm ‘ 𝑌 ) ) |
| 39 |
37 38
|
jca |
⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → ( ( lcm ‘ 𝑌 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑌 ) ) ) |
| 40 |
33 39
|
syl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ( lcm ‘ 𝑌 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑌 ) ) ) |
| 41 |
|
absid |
⊢ ( ( ( lcm ‘ 𝑌 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑌 ) ) → ( abs ‘ ( lcm ‘ 𝑌 ) ) = ( lcm ‘ 𝑌 ) ) |
| 42 |
40 41
|
syl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( abs ‘ ( lcm ‘ 𝑌 ) ) = ( lcm ‘ 𝑌 ) ) |
| 43 |
36 42
|
eqtrd |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( lcm ‘ 𝑌 ) ) |
| 44 |
43
|
adantl |
⊢ ( ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( lcm ‘ 𝑌 ) ) |
| 45 |
44
|
eqcomd |
⊢ ( ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ 𝑌 ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) |
| 46 |
|
unass |
⊢ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) = ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) |
| 47 |
46
|
eqcomi |
⊢ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) |
| 48 |
47
|
a1i |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) |
| 49 |
48
|
fveq2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( lcm ‘ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) ) |
| 50 |
|
simpl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → 𝑌 ⊆ ℤ ) |
| 51 |
50
|
adantl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → 𝑌 ⊆ ℤ ) |
| 52 |
|
unss |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 53 |
|
simpl |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → 𝑦 ⊆ ℤ ) |
| 54 |
52 53
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → 𝑦 ⊆ ℤ ) |
| 55 |
54
|
adantr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → 𝑦 ⊆ ℤ ) |
| 56 |
51 55
|
unssd |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑌 ∪ 𝑦 ) ⊆ ℤ ) |
| 57 |
56
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑌 ∪ 𝑦 ) ⊆ ℤ ) |
| 58 |
|
unfi |
⊢ ( ( 𝑌 ∈ Fin ∧ 𝑦 ∈ Fin ) → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) |
| 59 |
58
|
ex |
⊢ ( 𝑌 ∈ Fin → ( 𝑦 ∈ Fin → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( 𝑦 ∈ Fin → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) ) |
| 61 |
60
|
adantl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑦 ∈ Fin → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) ) |
| 62 |
61
|
impcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) |
| 63 |
|
vex |
⊢ 𝑧 ∈ V |
| 64 |
63
|
snss |
⊢ ( 𝑧 ∈ ℤ ↔ { 𝑧 } ⊆ ℤ ) |
| 65 |
64
|
biimpri |
⊢ ( { 𝑧 } ⊆ ℤ → 𝑧 ∈ ℤ ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → 𝑧 ∈ ℤ ) |
| 67 |
52 66
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → 𝑧 ∈ ℤ ) |
| 68 |
67
|
adantr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → 𝑧 ∈ ℤ ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → 𝑧 ∈ ℤ ) |
| 70 |
|
lcmfunsn |
⊢ ( ( ( 𝑌 ∪ 𝑦 ) ⊆ ℤ ∧ ( 𝑌 ∪ 𝑦 ) ∈ Fin ∧ 𝑧 ∈ ℤ ) → ( lcm ‘ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) |
| 71 |
57 62 69 70
|
syl3anc |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) |
| 72 |
49 71
|
eqtrd |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) |
| 74 |
54
|
anim1i |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) |
| 76 |
|
id |
⊢ ( ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) → ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) |
| 77 |
75 76
|
mpan9 |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) |
| 78 |
77
|
oveq1d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) = ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) ) |
| 79 |
34
|
adantl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ 𝑌 ) ∈ ℤ ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ 𝑌 ) ∈ ℤ ) |
| 81 |
55
|
anim2i |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℤ ) ) |
| 82 |
81
|
ancomd |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) |
| 83 |
|
lcmfcl |
⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) |
| 84 |
82 83
|
syl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) |
| 85 |
84
|
nn0zd |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 86 |
|
lcmass |
⊢ ( ( ( lcm ‘ 𝑌 ) ∈ ℤ ∧ ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 87 |
80 85 69 86
|
syl3anc |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 88 |
87
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 89 |
78 88
|
eqtrd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 90 |
73 89
|
eqtrd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 91 |
53
|
adantr |
⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → 𝑦 ⊆ ℤ ) |
| 92 |
|
simpr |
⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → 𝑦 ∈ Fin ) |
| 93 |
66
|
adantr |
⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → 𝑧 ∈ ℤ ) |
| 94 |
91 92 93
|
3jca |
⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) |
| 95 |
94
|
ex |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → ( 𝑦 ∈ Fin → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) ) |
| 96 |
52 95
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( 𝑦 ∈ Fin → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑦 ∈ Fin → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) ) |
| 98 |
97
|
impcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) |
| 99 |
|
lcmfunsn |
⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
| 100 |
98 99
|
syl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
| 101 |
100
|
oveq2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 102 |
101
|
eqeq2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ↔ ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) ) |
| 103 |
102
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ↔ ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) ) |
| 104 |
90 103
|
mpbird |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 105 |
104
|
exp31 |
⊢ ( 𝑦 ∈ Fin → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 106 |
105
|
com23 |
⊢ ( 𝑦 ∈ Fin → ( ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 107 |
11 18 25 32 45 106
|
findcard2 |
⊢ ( 𝑍 ∈ Fin → ( ( 𝑍 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) |
| 108 |
107
|
expd |
⊢ ( 𝑍 ∈ Fin → ( 𝑍 ⊆ ℤ → ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) ) |
| 109 |
108
|
impcom |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) |
| 110 |
109
|
impcom |
⊢ ( ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) |