Step |
Hyp |
Ref |
Expression |
1 |
|
cleq1lem |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) |
2 |
|
uneq2 |
⊢ ( 𝑥 = ∅ → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ ∅ ) ) |
3 |
|
un0 |
⊢ ( 𝑌 ∪ ∅ ) = 𝑌 |
4 |
2 3
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝑌 ∪ 𝑥 ) = 𝑌 ) |
5 |
4
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ 𝑌 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( lcm ‘ 𝑥 ) = ( lcm ‘ ∅ ) ) |
7 |
|
lcmf0 |
⊢ ( lcm ‘ ∅ ) = 1 |
8 |
6 7
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( lcm ‘ 𝑥 ) = 1 ) |
9 |
8
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) |
10 |
5 9
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ 𝑌 ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) ) |
11 |
1 10
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ 𝑌 ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) ) ) |
12 |
|
cleq1lem |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) |
13 |
|
uneq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ 𝑦 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑦 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) |
18 |
12 17
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) ) |
19 |
|
cleq1lem |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) |
20 |
|
uneq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ 𝑥 ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
24 |
21 23
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
25 |
19 24
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
26 |
|
cleq1lem |
⊢ ( 𝑥 = 𝑍 → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( 𝑍 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) |
27 |
|
uneq2 |
⊢ ( 𝑥 = 𝑍 → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ 𝑍 ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝑥 = 𝑍 → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑥 = 𝑍 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑍 ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝑥 = 𝑍 → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) |
31 |
28 30
|
eqeq12d |
⊢ ( 𝑥 = 𝑍 → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) |
32 |
26 31
|
imbi12d |
⊢ ( 𝑥 = 𝑍 → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( 𝑍 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) ) |
33 |
|
lcmfcl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ 𝑌 ) ∈ ℕ0 ) |
34 |
33
|
nn0zd |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ 𝑌 ) ∈ ℤ ) |
35 |
|
lcm1 |
⊢ ( ( lcm ‘ 𝑌 ) ∈ ℤ → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( abs ‘ ( lcm ‘ 𝑌 ) ) ) |
36 |
34 35
|
syl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( abs ‘ ( lcm ‘ 𝑌 ) ) ) |
37 |
|
nn0re |
⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → ( lcm ‘ 𝑌 ) ∈ ℝ ) |
38 |
|
nn0ge0 |
⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → 0 ≤ ( lcm ‘ 𝑌 ) ) |
39 |
37 38
|
jca |
⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → ( ( lcm ‘ 𝑌 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑌 ) ) ) |
40 |
33 39
|
syl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ( lcm ‘ 𝑌 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑌 ) ) ) |
41 |
|
absid |
⊢ ( ( ( lcm ‘ 𝑌 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑌 ) ) → ( abs ‘ ( lcm ‘ 𝑌 ) ) = ( lcm ‘ 𝑌 ) ) |
42 |
40 41
|
syl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( abs ‘ ( lcm ‘ 𝑌 ) ) = ( lcm ‘ 𝑌 ) ) |
43 |
36 42
|
eqtrd |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( lcm ‘ 𝑌 ) ) |
44 |
43
|
adantl |
⊢ ( ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( lcm ‘ 𝑌 ) ) |
45 |
44
|
eqcomd |
⊢ ( ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ 𝑌 ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) |
46 |
|
unass |
⊢ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) = ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) |
47 |
46
|
eqcomi |
⊢ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) |
48 |
47
|
a1i |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) |
49 |
48
|
fveq2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( lcm ‘ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) ) |
50 |
|
simpl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → 𝑌 ⊆ ℤ ) |
51 |
50
|
adantl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → 𝑌 ⊆ ℤ ) |
52 |
|
unss |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
53 |
|
simpl |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → 𝑦 ⊆ ℤ ) |
54 |
52 53
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → 𝑦 ⊆ ℤ ) |
55 |
54
|
adantr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → 𝑦 ⊆ ℤ ) |
56 |
51 55
|
unssd |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑌 ∪ 𝑦 ) ⊆ ℤ ) |
57 |
56
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑌 ∪ 𝑦 ) ⊆ ℤ ) |
58 |
|
unfi |
⊢ ( ( 𝑌 ∈ Fin ∧ 𝑦 ∈ Fin ) → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) |
59 |
58
|
ex |
⊢ ( 𝑌 ∈ Fin → ( 𝑦 ∈ Fin → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) ) |
60 |
59
|
adantl |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( 𝑦 ∈ Fin → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) ) |
61 |
60
|
adantl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑦 ∈ Fin → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) ) |
62 |
61
|
impcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) |
63 |
|
vex |
⊢ 𝑧 ∈ V |
64 |
63
|
snss |
⊢ ( 𝑧 ∈ ℤ ↔ { 𝑧 } ⊆ ℤ ) |
65 |
64
|
biimpri |
⊢ ( { 𝑧 } ⊆ ℤ → 𝑧 ∈ ℤ ) |
66 |
65
|
adantl |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → 𝑧 ∈ ℤ ) |
67 |
52 66
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → 𝑧 ∈ ℤ ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → 𝑧 ∈ ℤ ) |
69 |
68
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → 𝑧 ∈ ℤ ) |
70 |
|
lcmfunsn |
⊢ ( ( ( 𝑌 ∪ 𝑦 ) ⊆ ℤ ∧ ( 𝑌 ∪ 𝑦 ) ∈ Fin ∧ 𝑧 ∈ ℤ ) → ( lcm ‘ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) |
71 |
57 62 69 70
|
syl3anc |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) |
72 |
49 71
|
eqtrd |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) |
74 |
54
|
anim1i |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) |
75 |
74
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) |
76 |
|
id |
⊢ ( ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) → ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) |
77 |
75 76
|
mpan9 |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) |
78 |
77
|
oveq1d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) = ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) ) |
79 |
34
|
adantl |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ 𝑌 ) ∈ ℤ ) |
80 |
79
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ 𝑌 ) ∈ ℤ ) |
81 |
55
|
anim2i |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℤ ) ) |
82 |
81
|
ancomd |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) |
83 |
|
lcmfcl |
⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) |
84 |
82 83
|
syl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) |
85 |
84
|
nn0zd |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
86 |
|
lcmass |
⊢ ( ( ( lcm ‘ 𝑌 ) ∈ ℤ ∧ ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
87 |
80 85 69 86
|
syl3anc |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
88 |
87
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
89 |
78 88
|
eqtrd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
90 |
73 89
|
eqtrd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
91 |
53
|
adantr |
⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → 𝑦 ⊆ ℤ ) |
92 |
|
simpr |
⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → 𝑦 ∈ Fin ) |
93 |
66
|
adantr |
⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → 𝑧 ∈ ℤ ) |
94 |
91 92 93
|
3jca |
⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) |
95 |
94
|
ex |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → ( 𝑦 ∈ Fin → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) ) |
96 |
52 95
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( 𝑦 ∈ Fin → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) ) |
97 |
96
|
adantr |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑦 ∈ Fin → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) ) |
98 |
97
|
impcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) |
99 |
|
lcmfunsn |
⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
100 |
98 99
|
syl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
101 |
100
|
oveq2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
102 |
101
|
eqeq2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ↔ ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) ) |
103 |
102
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ↔ ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) ) |
104 |
90 103
|
mpbird |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
105 |
104
|
exp31 |
⊢ ( 𝑦 ∈ Fin → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
106 |
105
|
com23 |
⊢ ( 𝑦 ∈ Fin → ( ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
107 |
11 18 25 32 45 106
|
findcard2 |
⊢ ( 𝑍 ∈ Fin → ( ( 𝑍 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) |
108 |
107
|
expd |
⊢ ( 𝑍 ∈ Fin → ( 𝑍 ⊆ ℤ → ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) ) |
109 |
108
|
impcom |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) |
110 |
109
|
impcom |
⊢ ( ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) |