Step |
Hyp |
Ref |
Expression |
1 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ ℤ ↔ ∅ ⊆ ℤ ) ) |
2 |
|
raleq |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( lcm ‘ 𝑥 ) = ( lcm ‘ ∅ ) ) |
4 |
3
|
breq1d |
⊢ ( 𝑥 = ∅ → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
5 |
2 4
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) ) |
7 |
|
uneq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∪ { 𝑛 } ) = ( ∅ ∪ { 𝑛 } ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) ) |
9 |
3
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
10 |
8 9
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) |
12 |
6 11
|
anbi12d |
⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) ) |
13 |
1 12
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( ∅ ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) ) ) |
14 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ℤ ↔ 𝑦 ⊆ ℤ ) ) |
15 |
|
raleq |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑦 ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) |
18 |
15 17
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
20 |
|
uneq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∪ { 𝑛 } ) = ( 𝑦 ∪ { 𝑛 } ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) ) |
22 |
16
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) |
25 |
19 24
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) |
26 |
14 25
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) |
27 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ ℤ ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) ) |
28 |
|
raleq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 ) ) |
29 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ 𝑥 ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
30 |
29
|
breq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) |
31 |
28 30
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
32 |
31
|
ralbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
33 |
|
uneq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∪ { 𝑛 } ) = ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
34 |
33
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) |
35 |
29
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
36 |
34 35
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
37 |
36
|
ralbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
38 |
32 37
|
anbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
39 |
27 38
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
40 |
|
sseq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ⊆ ℤ ↔ 𝑌 ⊆ ℤ ) ) |
41 |
|
raleq |
⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 ) ) |
42 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑌 ) ) |
43 |
42
|
breq1d |
⊢ ( 𝑥 = 𝑌 → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ) |
44 |
41 43
|
imbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ) ) |
45 |
44
|
ralbidv |
⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ) ) |
46 |
|
uneq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∪ { 𝑛 } ) = ( 𝑌 ∪ { 𝑛 } ) ) |
47 |
46
|
fveq2d |
⊢ ( 𝑥 = 𝑌 → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) ) |
48 |
42
|
oveq1d |
⊢ ( 𝑥 = 𝑌 → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) |
49 |
47 48
|
eqeq12d |
⊢ ( 𝑥 = 𝑌 → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) |
50 |
49
|
ralbidv |
⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) |
51 |
45 50
|
anbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) ) |
52 |
40 51
|
imbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( 𝑌 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) ) ) |
53 |
|
lcmf0 |
⊢ ( lcm ‘ ∅ ) = 1 |
54 |
|
1dvds |
⊢ ( 𝑘 ∈ ℤ → 1 ∥ 𝑘 ) |
55 |
53 54
|
eqbrtrid |
⊢ ( 𝑘 ∈ ℤ → ( lcm ‘ ∅ ) ∥ 𝑘 ) |
56 |
55
|
a1d |
⊢ ( 𝑘 ∈ ℤ → ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
57 |
56
|
adantl |
⊢ ( ( ∅ ⊆ ℤ ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
58 |
57
|
ralrimiva |
⊢ ( ∅ ⊆ ℤ → ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
59 |
|
uncom |
⊢ ( ∅ ∪ { 𝑛 } ) = ( { 𝑛 } ∪ ∅ ) |
60 |
|
un0 |
⊢ ( { 𝑛 } ∪ ∅ ) = { 𝑛 } |
61 |
59 60
|
eqtri |
⊢ ( ∅ ∪ { 𝑛 } ) = { 𝑛 } |
62 |
61
|
a1i |
⊢ ( 𝑛 ∈ ℤ → ( ∅ ∪ { 𝑛 } ) = { 𝑛 } ) |
63 |
62
|
fveq2d |
⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( lcm ‘ { 𝑛 } ) ) |
64 |
|
lcmfsn |
⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ { 𝑛 } ) = ( abs ‘ 𝑛 ) ) |
65 |
53
|
a1i |
⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ ∅ ) = 1 ) |
66 |
65
|
oveq1d |
⊢ ( 𝑛 ∈ ℤ → ( ( lcm ‘ ∅ ) lcm 𝑛 ) = ( 1 lcm 𝑛 ) ) |
67 |
|
1z |
⊢ 1 ∈ ℤ |
68 |
|
lcmcom |
⊢ ( ( 1 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 1 lcm 𝑛 ) = ( 𝑛 lcm 1 ) ) |
69 |
67 68
|
mpan |
⊢ ( 𝑛 ∈ ℤ → ( 1 lcm 𝑛 ) = ( 𝑛 lcm 1 ) ) |
70 |
|
lcm1 |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 lcm 1 ) = ( abs ‘ 𝑛 ) ) |
71 |
66 69 70
|
3eqtrrd |
⊢ ( 𝑛 ∈ ℤ → ( abs ‘ 𝑛 ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
72 |
63 64 71
|
3eqtrd |
⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
73 |
72
|
adantl |
⊢ ( ( ∅ ⊆ ℤ ∧ 𝑛 ∈ ℤ ) → ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
74 |
73
|
ralrimiva |
⊢ ( ∅ ⊆ ℤ → ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
75 |
58 74
|
jca |
⊢ ( ∅ ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) |
76 |
|
unss |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
77 |
|
simpl |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → 𝑦 ⊆ ℤ ) |
78 |
76 77
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → 𝑦 ⊆ ℤ ) |
79 |
78
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) → 𝑦 ⊆ ℤ ) |
80 |
|
vex |
⊢ 𝑧 ∈ V |
81 |
80
|
snss |
⊢ ( 𝑧 ∈ ℤ ↔ { 𝑧 } ⊆ ℤ ) |
82 |
|
lcmfunsnlem1 |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) |
83 |
|
lcmfunsnlem2 |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
84 |
82 83
|
jca |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
85 |
84
|
3exp1 |
⊢ ( 𝑧 ∈ ℤ → ( 𝑦 ⊆ ℤ → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) ) |
86 |
81 85
|
sylbir |
⊢ ( { 𝑧 } ⊆ ℤ → ( 𝑦 ⊆ ℤ → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) ) |
87 |
86
|
impcom |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
88 |
76 87
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
89 |
88
|
impcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
90 |
79 89
|
embantd |
⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) → ( ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
91 |
90
|
ex |
⊢ ( 𝑦 ∈ Fin → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
92 |
91
|
com23 |
⊢ ( 𝑦 ∈ Fin → ( ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
93 |
13 26 39 52 75 92
|
findcard2 |
⊢ ( 𝑌 ∈ Fin → ( 𝑌 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) ) |
94 |
93
|
impcom |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) |