| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ ℤ ↔ ∅ ⊆ ℤ ) ) |
| 2 |
|
raleq |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 ) ) |
| 3 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( lcm ‘ 𝑥 ) = ( lcm ‘ ∅ ) ) |
| 4 |
3
|
breq1d |
⊢ ( 𝑥 = ∅ → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
| 5 |
2 4
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) ) |
| 6 |
5
|
ralbidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) ) |
| 7 |
|
uneq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∪ { 𝑛 } ) = ( ∅ ∪ { 𝑛 } ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) ) |
| 9 |
3
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
| 10 |
8 9
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) |
| 11 |
10
|
ralbidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) |
| 12 |
6 11
|
anbi12d |
⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) ) |
| 13 |
1 12
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( ∅ ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) ) ) |
| 14 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ℤ ↔ 𝑦 ⊆ ℤ ) ) |
| 15 |
|
raleq |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑦 ) ) |
| 17 |
16
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) |
| 18 |
15 17
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 19 |
18
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 20 |
|
uneq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∪ { 𝑛 } ) = ( 𝑦 ∪ { 𝑛 } ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 22 |
16
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) |
| 23 |
21 22
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) |
| 24 |
23
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) |
| 25 |
19 24
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) |
| 26 |
14 25
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) |
| 27 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ ℤ ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) ) |
| 28 |
|
raleq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ 𝑥 ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 30 |
29
|
breq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) |
| 31 |
28 30
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
| 32 |
31
|
ralbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
| 33 |
|
uneq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∪ { 𝑛 } ) = ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 34 |
33
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) |
| 35 |
29
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| 36 |
34 35
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 37 |
36
|
ralbidv |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 38 |
32 37
|
anbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 39 |
27 38
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 40 |
|
sseq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ⊆ ℤ ↔ 𝑌 ⊆ ℤ ) ) |
| 41 |
|
raleq |
⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 ) ) |
| 42 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑌 ) ) |
| 43 |
42
|
breq1d |
⊢ ( 𝑥 = 𝑌 → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ) |
| 44 |
41 43
|
imbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ) ) |
| 45 |
44
|
ralbidv |
⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ) ) |
| 46 |
|
uneq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∪ { 𝑛 } ) = ( 𝑌 ∪ { 𝑛 } ) ) |
| 47 |
46
|
fveq2d |
⊢ ( 𝑥 = 𝑌 → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) ) |
| 48 |
42
|
oveq1d |
⊢ ( 𝑥 = 𝑌 → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) |
| 49 |
47 48
|
eqeq12d |
⊢ ( 𝑥 = 𝑌 → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) |
| 50 |
49
|
ralbidv |
⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) |
| 51 |
45 50
|
anbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) ) |
| 52 |
40 51
|
imbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( 𝑌 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) ) ) |
| 53 |
|
lcmf0 |
⊢ ( lcm ‘ ∅ ) = 1 |
| 54 |
|
1dvds |
⊢ ( 𝑘 ∈ ℤ → 1 ∥ 𝑘 ) |
| 55 |
53 54
|
eqbrtrid |
⊢ ( 𝑘 ∈ ℤ → ( lcm ‘ ∅ ) ∥ 𝑘 ) |
| 56 |
55
|
a1d |
⊢ ( 𝑘 ∈ ℤ → ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
| 57 |
56
|
adantl |
⊢ ( ( ∅ ⊆ ℤ ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
| 58 |
57
|
ralrimiva |
⊢ ( ∅ ⊆ ℤ → ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
| 59 |
|
uncom |
⊢ ( ∅ ∪ { 𝑛 } ) = ( { 𝑛 } ∪ ∅ ) |
| 60 |
|
un0 |
⊢ ( { 𝑛 } ∪ ∅ ) = { 𝑛 } |
| 61 |
59 60
|
eqtri |
⊢ ( ∅ ∪ { 𝑛 } ) = { 𝑛 } |
| 62 |
61
|
a1i |
⊢ ( 𝑛 ∈ ℤ → ( ∅ ∪ { 𝑛 } ) = { 𝑛 } ) |
| 63 |
62
|
fveq2d |
⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( lcm ‘ { 𝑛 } ) ) |
| 64 |
|
lcmfsn |
⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ { 𝑛 } ) = ( abs ‘ 𝑛 ) ) |
| 65 |
53
|
a1i |
⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ ∅ ) = 1 ) |
| 66 |
65
|
oveq1d |
⊢ ( 𝑛 ∈ ℤ → ( ( lcm ‘ ∅ ) lcm 𝑛 ) = ( 1 lcm 𝑛 ) ) |
| 67 |
|
1z |
⊢ 1 ∈ ℤ |
| 68 |
|
lcmcom |
⊢ ( ( 1 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 1 lcm 𝑛 ) = ( 𝑛 lcm 1 ) ) |
| 69 |
67 68
|
mpan |
⊢ ( 𝑛 ∈ ℤ → ( 1 lcm 𝑛 ) = ( 𝑛 lcm 1 ) ) |
| 70 |
|
lcm1 |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 lcm 1 ) = ( abs ‘ 𝑛 ) ) |
| 71 |
66 69 70
|
3eqtrrd |
⊢ ( 𝑛 ∈ ℤ → ( abs ‘ 𝑛 ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
| 72 |
63 64 71
|
3eqtrd |
⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
| 73 |
72
|
adantl |
⊢ ( ( ∅ ⊆ ℤ ∧ 𝑛 ∈ ℤ ) → ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
| 74 |
73
|
ralrimiva |
⊢ ( ∅ ⊆ ℤ → ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
| 75 |
58 74
|
jca |
⊢ ( ∅ ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) |
| 76 |
|
unss |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 77 |
|
simpl |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → 𝑦 ⊆ ℤ ) |
| 78 |
76 77
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → 𝑦 ⊆ ℤ ) |
| 79 |
78
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) → 𝑦 ⊆ ℤ ) |
| 80 |
|
vex |
⊢ 𝑧 ∈ V |
| 81 |
80
|
snss |
⊢ ( 𝑧 ∈ ℤ ↔ { 𝑧 } ⊆ ℤ ) |
| 82 |
|
lcmfunsnlem1 |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) |
| 83 |
|
lcmfunsnlem2 |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| 84 |
82 83
|
jca |
⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 85 |
84
|
3exp1 |
⊢ ( 𝑧 ∈ ℤ → ( 𝑦 ⊆ ℤ → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) ) |
| 86 |
81 85
|
sylbir |
⊢ ( { 𝑧 } ⊆ ℤ → ( 𝑦 ⊆ ℤ → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) ) |
| 87 |
86
|
impcom |
⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 88 |
76 87
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 89 |
88
|
impcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 90 |
79 89
|
embantd |
⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) → ( ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 91 |
90
|
ex |
⊢ ( 𝑦 ∈ Fin → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 92 |
91
|
com23 |
⊢ ( 𝑦 ∈ Fin → ( ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 93 |
13 26 39 52 75 92
|
findcard2 |
⊢ ( 𝑌 ∈ Fin → ( 𝑌 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) ) |
| 94 |
93
|
impcom |
⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) |